View Source Axon.Metrics (Axon v0.7.0)
Metric functions.
Metrics are used to measure the performance and compare performance of models in easy-to-understand terms. Often times, neural networks use surrogate loss functions such as negative log-likelihood to indirectly optimize a certain performance metric. Metrics such as accuracy, also called the 0-1 loss, do not have useful derivatives (e.g. they are information sparse), and are often intractable even with low input dimensions.
Despite not being able to train specifically for certain metrics, it's still useful to track these metrics to monitor the performance of a neural network during training. Metrics such as accuracy provide useful feedback during training, whereas loss can sometimes be difficult to interpret.
You can attach any of these functions as metrics within the
Axon.Loop
API using Axon.Loop.metric/3
.
All of the functions in this module are implemented as
numerical functions and can be JIT or AOT compiled with
any supported Nx
compiler.
Summary
Functions
Computes the accuracy of the given predictions.
Computes the number of false negative predictions with respect to given targets.
Computes the number of false positive predictions with respect to given targets.
Calculates the mean absolute error of predictions with respect to targets.
Computes the precision of the given predictions with respect to the given targets.
Computes the recall of the given predictions with respect to the given targets.
Returns a function which computes a running average given current average, new observation, and current iteration.
Returns a function which computes a running sum given current sum, new observation, and current iteration.
Computes the sensitivity of the given predictions with respect to the given targets.
Computes the specificity of the given predictions with respect to the given targets.
Computes the top-k categorical accuracy.
Computes the number of true negative predictions with respect to given targets.
Computes the number of true positive predictions with respect to given targets.
Functions
Computes the accuracy of the given predictions.
If the size of the last axis is 1, it performs a binary accuracy computation with a threshold of 0.5. Otherwise, computes categorical accuracy.
Argument Shapes
y_true
- $(d_0, d_1, ..., d_n)$y_pred
- $(d_0, d_1, ..., d_n)$
Examples
iex> Axon.Metrics.accuracy(Nx.tensor([[1], [0], [0]]), Nx.tensor([[1], [1], [1]]))
#Nx.Tensor<
f32
0.3333333432674408
>
iex> Axon.Metrics.accuracy(Nx.tensor([[0, 1], [1, 0], [1, 0]]), Nx.tensor([[0, 1], [1, 0], [0, 1]]))
#Nx.Tensor<
f32
0.6666666865348816
>
iex> Axon.Metrics.accuracy(Nx.tensor([[0, 1, 0], [1, 0, 0]]), Nx.tensor([[0, 1, 0], [0, 1, 0]]))
#Nx.Tensor<
f32
0.5
>
Computes the number of false negative predictions with respect to given targets.
Options
:threshold
- threshold for truth value of predictions. Defaults to0.5
.
Examples
iex> y_true = Nx.tensor([1, 0, 1, 1, 0, 1, 0])
iex> y_pred = Nx.tensor([0.8, 0.6, 0.4, 0.2, 0.8, 0.2, 0.2])
iex> Axon.Metrics.false_negatives(y_true, y_pred)
#Nx.Tensor<
u32
3
>
Computes the number of false positive predictions with respect to given targets.
Options
:threshold
- threshold for truth value of predictions. Defaults to0.5
.
Examples
iex> y_true = Nx.tensor([1, 0, 1, 1, 0, 1, 0])
iex> y_pred = Nx.tensor([0.8, 0.6, 0.4, 0.2, 0.8, 0.2, 0.2])
iex> Axon.Metrics.false_positives(y_true, y_pred)
#Nx.Tensor<
u32
2
>
Calculates the mean absolute error of predictions with respect to targets.
$$ l_i = \sum_i |\hat{y_i} - y_i| $$
Argument Shapes
y_true
- $(d_0, d_1, ..., d_n)$y_pred
- $(d_0, d_1, ..., d_n)$
Examples
iex> y_true = Nx.tensor([[0.0, 1.0], [0.0, 0.0]], type: {:f, 32})
iex> y_pred = Nx.tensor([[1.0, 1.0], [1.0, 0.0]], type: {:f, 32})
iex> Axon.Metrics.mean_absolute_error(y_true, y_pred)
#Nx.Tensor<
f32
0.5
>
Computes the precision of the given predictions with respect to the given targets.
Argument Shapes
y_true
- $(d_0, d_1, ..., d_n)$y_pred
- $(d_0, d_1, ..., d_n)$
Options
:threshold
- threshold for truth value of the predictions. Defaults to0.5
Examples
iex> Axon.Metrics.precision(Nx.tensor([0, 1, 1, 1]), Nx.tensor([1, 0, 1, 1]))
#Nx.Tensor<
f32
0.6666666865348816
>
Computes the recall of the given predictions with respect to the given targets.
Argument Shapes
y_true
- $(d_0, d_1, ..., d_n)$y_pred
- $(d_0, d_1, ..., d_n)$
Options
:threshold
- threshold for truth value of the predictions. Defaults to0.5
Examples
iex> Axon.Metrics.recall(Nx.tensor([0, 1, 1, 1]), Nx.tensor([1, 0, 1, 1]))
#Nx.Tensor<
f32
0.6666666865348816
>
Returns a function which computes a running average given current average, new observation, and current iteration.
Examples
iex> cur_avg = 0.5
iex> iteration = 1
iex> y_true = Nx.tensor([[0, 1], [1, 0], [1, 0]])
iex> y_pred = Nx.tensor([[0, 1], [1, 0], [1, 0]])
iex> avg_acc = Axon.Metrics.running_average(&Axon.Metrics.accuracy/2)
iex> avg_acc.(cur_avg, [y_true, y_pred], iteration)
#Nx.Tensor<
f32
0.75
>
Returns a function which computes a running sum given current sum, new observation, and current iteration.
Examples
iex> cur_sum = 12
iex> iteration = 2
iex> y_true = Nx.tensor([0, 1, 0, 1])
iex> y_pred = Nx.tensor([1, 1, 0, 1])
iex> fps = Axon.Metrics.running_sum(&Axon.Metrics.false_positives/2)
iex> fps.(cur_sum, [y_true, y_pred], iteration)
#Nx.Tensor<
s64
13
>
Computes the sensitivity of the given predictions with respect to the given targets.
Argument Shapes
y_true
- $(d_0, d_1, ..., d_n)$y_pred
- $(d_0, d_1, ..., d_n)$
Options
:threshold
- threshold for truth value of the predictions. Defaults to0.5
Examples
iex> Axon.Metrics.sensitivity(Nx.tensor([0, 1, 1, 1]), Nx.tensor([1, 0, 1, 1]))
#Nx.Tensor<
f32
0.6666666865348816
>
Computes the specificity of the given predictions with respect to the given targets.
Argument Shapes
y_true
- $(d_0, d_1, ..., d_n)$y_pred
- $(d_0, d_1, ..., d_n)$
Options
:threshold
- threshold for truth value of the predictions. Defaults to0.5
Examples
iex> Axon.Metrics.specificity(Nx.tensor([0, 1, 1, 1]), Nx.tensor([1, 0, 1, 1]))
#Nx.Tensor<
f32
0.0
>
Computes the top-k categorical accuracy.
Options
k
- The k in "top-k". Defaults to 5.sparse
- Ify_true
is a sparse tensor. Defaults tofalse
.
Argument Shapes
y_true
- $(d_0, d_1, ..., d_n)$y_pred
- $(d_0, d_1, ..., d_n)$
Examples
iex> Axon.Metrics.top_k_categorical_accuracy(Nx.tensor([0, 1, 0, 0, 0]), Nx.tensor([0.1, 0.4, 0.3, 0.7, 0.1]), k: 2)
#Nx.Tensor<
f32
1.0
>
iex> Axon.Metrics.top_k_categorical_accuracy(Nx.tensor([[0, 1, 0], [1, 0, 0]]), Nx.tensor([[0.1, 0.4, 0.7], [0.1, 0.4, 0.7]]), k: 2)
#Nx.Tensor<
f32
0.5
>
iex> Axon.Metrics.top_k_categorical_accuracy(Nx.tensor([[0], [2]]), Nx.tensor([[0.1, 0.4, 0.7], [0.1, 0.4, 0.7]]), k: 2, sparse: true)
#Nx.Tensor<
f32
0.5
>
Computes the number of true negative predictions with respect to given targets.
Options
:threshold
- threshold for truth value of predictions. Defaults to0.5
.
Examples
iex> y_true = Nx.tensor([1, 0, 1, 1, 0, 1, 0])
iex> y_pred = Nx.tensor([0.8, 0.6, 0.4, 0.2, 0.8, 0.2, 0.2])
iex> Axon.Metrics.true_negatives(y_true, y_pred)
#Nx.Tensor<
u32
1
>
Computes the number of true positive predictions with respect to given targets.
Options
:threshold
- threshold for truth value of predictions. Defaults to0.5
.
Examples
iex> y_true = Nx.tensor([1, 0, 1, 1, 0, 1, 0])
iex> y_pred = Nx.tensor([0.8, 0.6, 0.4, 0.2, 0.8, 0.2, 0.2])
iex> Axon.Metrics.true_positives(y_true, y_pred)
#Nx.Tensor<
u32
1
>