View Source Nx.Type (Nx v0.9.0)
Conveniences for working with types.
A type is a two-element tuple with the name and the size. The respective sizes for the types are the following:
:s
- signed integer (2, 4, 8, 16, 32, 64):u
- unsigned integer (2, 4, 8, 16, 32, 64):f
- float (8, 16, 32, 64):bf
- a brain floating point (16):c
- a complex number, represented as a pair of floats (64, 128)
Each type has an equivalent atom representation, for example
{:s, 8}
can be expressed as :s8
. When working with user-given
types make sure to call normalize!/1
to get the canonical
representation.
Note: there is a special type used by the defn
compiler
which is {:tuple, size}
, that represents a tuple. Said types
do not appear on user code, only on compiler implementations,
and therefore are not handled by the functions in this module.
This module can be used in defn
.
Summary
Functions
Casts the given number to type.
Returns true if the type is a complex number.
Returns $e$ as a binary for the given type
Returns the machine epsilon for the given type
Returns Euler–Mascheroni constant ($\gamma$) as a binary for the given type
Returns true if the type is a float in Elixir.
Infers the type of the given number.
Returns infinity as a binary for the given type.
Returns true if the type is an integer in Elixir.
Returns the maximum possible value for the given type.
Returns the maximum possible finite value for the given type.
Merges the given types finding a suitable representation for both.
Merges the given types with the type of a number.
Returns the minimum possible value for the given type.
Returns the minimum possible finite value for the given type.
Returns infinity as a binary for the given type.
Returns negative infinity as a binary for the given type.
Validates and normalizes the given type tuple.
Returns $\pi$ as a binary for the given type
Returns the smallest positive number as a binary for the given type
Converts the given type to an aggregation precision.
Converts the given type to a complex representation with the minimum size necessary.
Converts the given type to a floating point representation with the minimum size necessary.
Converts the given type to a real number representation with the minimum size necessary.
Returns a string representation of the given type.
Types
@type short_t() ::
:s8
| :s16
| :s32
| :s64
| :u8
| :u16
| :u32
| :u64
| :f8
| :f16
| :f32
| :f64
| :bf16
| :c64
| :c128
@type t() :: {:s, 2} | {:s, 4} | {:s, 8} | {:s, 16} | {:s, 32} | {:s, 64} | {:u, 2} | {:u, 4} | {:u, 8} | {:u, 16} | {:u, 32} | {:u, 64} | {:f, 8} | {:f, 16} | {:f, 32} | {:f, 64} | {:bf, 16} | {:c, 64} | {:c, 128} | {:tuple, non_neg_integer()}
Functions
Casts the given number to type.
It does not handle overflow/underflow, returning the number as is, but cast.
Examples
iex> Nx.Type.cast_number!({:u, 8}, 10)
10
iex> Nx.Type.cast_number!({:s, 8}, 10)
10
iex> Nx.Type.cast_number!({:s, 8}, -10)
-10
iex> Nx.Type.cast_number!({:f, 32}, 10)
10.0
iex> Nx.Type.cast_number!({:bf, 16}, -10)
-10.0
iex> Nx.Type.cast_number!({:f, 32}, 10.0)
10.0
iex> Nx.Type.cast_number!({:bf, 16}, -10.0)
-10.0
iex> Nx.Type.cast_number!({:c, 64}, 10)
%Complex{im: 0.0, re: 10.0}
iex> Nx.Type.cast_number!({:u, 8}, -10)
** (ArgumentError) cannot cast number -10 to {:u, 8}
iex> Nx.Type.cast_number!({:s, 8}, 10.0)
** (ArgumentError) cannot cast number 10.0 to {:s, 8}
Returns true if the type is a complex number.
Examples
iex> Nx.Type.complex?({:c, 64})
true
iex> Nx.Type.complex?({:f, 64})
false
Returns $e$ as a binary for the given type
Returns the machine epsilon for the given type
Returns Euler–Mascheroni constant ($\gamma$) as a binary for the given type
Returns true if the type is a float in Elixir.
Examples
iex> Nx.Type.float?({:f, 32})
true
iex> Nx.Type.float?({:bf, 16})
true
iex> Nx.Type.float?({:u, 64})
false
Infers the type of the given number.
Examples
iex> Nx.Type.infer(1)
{:s, 32}
iex> Nx.Type.infer(1.0)
{:f, 32}
iex> Nx.Type.infer(Complex.new(1))
{:c, 64}
Returns infinity as a binary for the given type.
Returns true if the type is an integer in Elixir.
Examples
iex> Nx.Type.integer?({:s, 8})
true
iex> Nx.Type.integer?({:u, 64})
true
iex> Nx.Type.integer?({:f, 64})
false
Returns the maximum possible value for the given type.
Returns the maximum possible finite value for the given type.
Merges the given types finding a suitable representation for both.
Types have the following precedence:
c > f > bf > s > u
If the types are the same, they are merged to the highest size.
If they are different, the one with the highest precedence wins,
as long as the size of the max(big, small * 2))
fits under 64
bits. Otherwise it casts to f64.
In the case of complex numbers, the maximum bit size is 128 bits because they are composed of two floats.
Examples
iex> Nx.Type.merge({:s, 8}, {:s, 8})
{:s, 8}
iex> Nx.Type.merge({:s, 8}, {:s, 64})
{:s, 64}
iex> Nx.Type.merge({:s, 8}, {:u, 8})
{:s, 16}
iex> Nx.Type.merge({:s, 16}, {:u, 8})
{:s, 16}
iex> Nx.Type.merge({:s, 8}, {:u, 16})
{:s, 32}
iex> Nx.Type.merge({:s, 32}, {:u, 8})
{:s, 32}
iex> Nx.Type.merge({:s, 8}, {:u, 32})
{:s, 64}
iex> Nx.Type.merge({:s, 64}, {:u, 8})
{:s, 64}
iex> Nx.Type.merge({:s, 8}, {:u, 64})
{:s, 64}
iex> Nx.Type.merge({:u, 8}, {:f, 32})
{:f, 32}
iex> Nx.Type.merge({:u, 64}, {:f, 32})
{:f, 32}
iex> Nx.Type.merge({:s, 8}, {:f, 32})
{:f, 32}
iex> Nx.Type.merge({:s, 64}, {:f, 32})
{:f, 32}
iex> Nx.Type.merge({:u, 8}, {:f, 64})
{:f, 64}
iex> Nx.Type.merge({:u, 64}, {:f, 64})
{:f, 64}
iex> Nx.Type.merge({:s, 8}, {:f, 64})
{:f, 64}
iex> Nx.Type.merge({:s, 64}, {:f, 64})
{:f, 64}
iex> Nx.Type.merge({:u, 8}, {:bf, 16})
{:bf, 16}
iex> Nx.Type.merge({:u, 64}, {:bf, 16})
{:bf, 16}
iex> Nx.Type.merge({:s, 8}, {:bf, 16})
{:bf, 16}
iex> Nx.Type.merge({:s, 64}, {:bf, 16})
{:bf, 16}
iex> Nx.Type.merge({:f, 32}, {:bf, 16})
{:f, 32}
iex> Nx.Type.merge({:f, 64}, {:bf, 16})
{:f, 64}
iex> Nx.Type.merge({:c, 64}, {:f, 32})
{:c, 64}
iex> Nx.Type.merge({:c, 64}, {:c, 64})
{:c, 64}
iex> Nx.Type.merge({:c, 128}, {:c, 64})
{:c, 128}
Merges the given types with the type of a number.
We attempt to keep the original type and its size as best as possible.
Examples
iex> Nx.Type.merge_number({:u, 8}, 0)
{:u, 8}
iex> Nx.Type.merge_number({:u, 8}, 255)
{:u, 8}
iex> Nx.Type.merge_number({:u, 8}, 256)
{:u, 16}
iex> Nx.Type.merge_number({:u, 8}, -1)
{:s, 16}
iex> Nx.Type.merge_number({:u, 8}, -32767)
{:s, 16}
iex> Nx.Type.merge_number({:u, 8}, -32768)
{:s, 16}
iex> Nx.Type.merge_number({:u, 8}, -32769)
{:s, 32}
iex> Nx.Type.merge_number({:s, 8}, 0)
{:s, 8}
iex> Nx.Type.merge_number({:s, 8}, 127)
{:s, 8}
iex> Nx.Type.merge_number({:s, 8}, -128)
{:s, 8}
iex> Nx.Type.merge_number({:s, 8}, 128)
{:s, 16}
iex> Nx.Type.merge_number({:s, 8}, -129)
{:s, 16}
iex> Nx.Type.merge_number({:s, 8}, 1.0)
{:f, 32}
iex> Nx.Type.merge_number({:u, 64}, -1337)
{:s, 64}
iex> Nx.Type.merge_number({:f, 32}, 1)
{:f, 32}
iex> Nx.Type.merge_number({:f, 32}, 1.0)
{:f, 32}
iex> Nx.Type.merge_number({:f, 64}, 1.0)
{:f, 64}
Returns the minimum possible value for the given type.
Returns the minimum possible finite value for the given type.
Returns infinity as a binary for the given type.
Returns negative infinity as a binary for the given type.
Validates and normalizes the given type tuple.
It returns the type tuple or raises.
Accepts both the tuple format and the short atom format.
Examples
iex> Nx.Type.normalize!({:u, 8})
{:u, 8}
iex> Nx.Type.normalize!(:u8)
{:u, 8}
iex> Nx.Type.normalize!({:u, 0})
** (ArgumentError) invalid numerical type: {:u, 0} (see Nx.Type docs for all supported types)
iex> Nx.Type.normalize!({:k, 8})
** (ArgumentError) invalid numerical type: {:k, 8} (see Nx.Type docs for all supported types)
Returns $\pi$ as a binary for the given type
Returns the smallest positive number as a binary for the given type
Converts the given type to an aggregation precision.
Examples
iex> Nx.Type.to_aggregate({:s, 8})
{:s, 32}
iex> Nx.Type.to_aggregate({:u, 16})
{:u, 32}
iex> Nx.Type.to_aggregate({:s, 64})
{:s, 64}
iex> Nx.Type.to_aggregate({:bf, 16})
{:bf, 16}
iex> Nx.Type.to_aggregate({:f, 32})
{:f, 32}
iex> Nx.Type.to_aggregate({:c, 64})
{:c, 64}
Converts the given type to a complex representation with the minimum size necessary.
Examples
iex> Nx.Type.to_complex({:s, 64})
{:c, 64}
iex> Nx.Type.to_complex({:bf, 16})
{:c, 64}
iex> Nx.Type.to_complex({:f, 32})
{:c, 64}
iex> Nx.Type.to_complex({:c, 64})
{:c, 64}
iex> Nx.Type.to_complex({:f, 64})
{:c, 128}
iex> Nx.Type.to_complex({:c, 128})
{:c, 128}
Converts the given type to a floating point representation with the minimum size necessary.
Note both float and complex are floating point representations.
Examples
iex> Nx.Type.to_floating({:s, 8})
{:f, 32}
iex> Nx.Type.to_floating({:s, 32})
{:f, 32}
iex> Nx.Type.to_floating({:bf, 16})
{:bf, 16}
iex> Nx.Type.to_floating({:f, 32})
{:f, 32}
iex> Nx.Type.to_floating({:c, 64})
{:c, 64}
Converts the given type to a real number representation with the minimum size necessary.
Examples
iex> Nx.Type.to_real({:s, 8})
{:f, 32}
iex> Nx.Type.to_real({:s, 64})
{:f, 32}
iex> Nx.Type.to_real({:bf, 16})
{:bf, 16}
iex> Nx.Type.to_real({:c, 64})
{:f, 32}
iex> Nx.Type.to_real({:c, 128})
{:f, 64}
iex> Nx.Type.to_real({:f, 32})
{:f, 32}
iex> Nx.Type.to_real({:f, 64})
{:f, 64}
Returns a string representation of the given type.
Examples
iex> Nx.Type.to_string({:s, 8})
"s8"
iex> Nx.Type.to_string({:s, 16})
"s16"
iex> Nx.Type.to_string({:s, 32})
"s32"
iex> Nx.Type.to_string({:s, 64})
"s64"
iex> Nx.Type.to_string({:u, 8})
"u8"
iex> Nx.Type.to_string({:u, 16})
"u16"
iex> Nx.Type.to_string({:u, 32})
"u32"
iex> Nx.Type.to_string({:u, 64})
"u64"
iex> Nx.Type.to_string({:f, 16})
"f16"
iex> Nx.Type.to_string({:bf, 16})
"bf16"
iex> Nx.Type.to_string({:f, 32})
"f32"
iex> Nx.Type.to_string({:f, 64})
"f64"