View Source Phoenix.Component (Phoenix LiveView v0.18.2)
Define reusable function components with HEEx templates.
A function component is any function that receives an assigns map as an argument and returns
a rendered struct built with the ~H
sigil:
defmodule MyComponent do
use Phoenix.Component
def greet(assigns) do
~H"""
<p>Hello, <%= @name %>!</p>
"""
end
end
When invoked within a ~H
sigil or HEEx template file:
<MyComponent.greet name="Jane" />
The following HTML is rendered:
<p>Hello, Jane!</p>
If the function component is defined locally, or its module is imported, then the caller can invoke the function directly without specifying the module:
<.greet name="Jane" />
For dynamic values, you can interpolate Elixir expressions into a function component:
<.greet name={@user.name} />
Function components can also accept blocks of HEEx content (more on this later):
<.card>
<p>This is the body of my card!</p>
</.card>
Like Phoenix.LiveView
and Phoenix.LiveComponent
, function components are implemented using
a map of assigns, and follow the same rules and best practices.
However, we typically do not implement function components by manipulating the assigns map
directly, as Phoenix.Component
provides two higher-level abstractions for us:
attributes and slots.
attributes
Attributes
Phoenix.Component
provides the attr/3
macro to declare what attributes the proceeding function
component expects to receive when invoked:
attr :name, :string, required: true
def greet(assigns) do
~H"""
<p>Hello, <%= @name %>!</p>
"""
end
By calling attr/3
, it is now clear that greet/1
requires a string attribute called name
present in its assigns map to properly render. Failing to do so will result in a compilation
warning:
<MyComponent.greet />
<!-- warning: missing required attribute "name" for component MyAppWeb.MyComponent.greet/1
lib/app_web/my_component.ex:15 -->
Attributes can provide default values that are automatically merged into the assigns map:
attr :name, :string, default: "Bob"
Now you can invoke the function component without providing a value for name
:
<.greet />
Rendering the following HTML:
<p>Hello, Bob!</p>
Accessing an attribute which is required and does not have a default value will fail.
You must explicitly declare default: nil
or assign a value programmatically with the
assign_new/3
function.
Multiple attributes can be declared for the same function component:
attr :name, :string, required: true
attr :age, :integer, required: true
def celebrate(assigns) do
~H"""
<p>
Happy birthday <%= @name %>!
You are <%= @age %> years old.
</p>
"""
end
Allowing the caller to pass multiple values:
<.celebrate name={"Genevieve"} age={34} />
Rendering the following HTML:
<p>
Happy birthday Genevieve!
You are 34 years old.
</p>
Multiple function components can be defined in the same module, with different attributes. In the
following example, <Components.greet/>
requires a name
, but does not require a title
, and
<Component.heading>
requires a title
, but does not require a name
.
defmodule Components do
use Phoenix.Component
attr :title, :string, required: true
def heading(assigns) do
~H"""
<h1><%= @title %></h1>
"""
end
attr :name, :string, required: true
def greet(assigns) do
~H"""
<p>Hello <%= @name %></p>
"""
end
end
With the attr/3
macro you have the core ingredients to create reusable function components.
But what if you need your function components to support dynamic attributes, such as common HTML
attributes to mix into a component's container?
global-attributes
Global Attributes
Global attributes are a set of attributes that a function component can accept when it
declares an attribute of type :global
. By default, the set of attributes accepted are those
attributes common to all standard HTML tags.
See Global attributes
for a complete list of attributes.
Once a global attribute is declared, any number of attributes in the set can be passed by the caller without having to modify the function component itself.
Below is an example of a function component that accepts a dynamic number of global attributes:
attr :message, :string, required: true
attr :rest, :global
def notification(assigns) do
~H"""
<span {@rest}><%= @message %></span>
"""
end
The caller can pass multiple global attributes (such as phx-*
bindings or the class
attribute):
<.notification message="You've got mail!" class="bg-green-200" phx-click="close" />
Rendering the following HTML:
<span class="bg-green-200" phx-click="close">You've got mail!</span>
Note that the function component did not have to explicitly declare a class
or phx-click
attribute in order to render.
Global attribute can define defaults which are merged with attributes provided by the caller.
For example, you may declare a default class
if the caller does not provide one:
attr :rest, :global, default: %{class: "bg-blue-200"}
Now you can call the function component without a class
attribute:
<.notification message="You've got mail!" phx-click="close" />
Rendering the following HTML:
<span class="bg-blue-200" phx-click="close">You've got mail!</span>
You may also specify which attributes are included in addition to the known globals
with the :include
option. For example to support the form
attribute on a button
component:
# <.button form="my-form"/>
attr :rest, :global, include: ~w(form)
slot :inner_block
def button(assigns) do
~H"""
<button {@rest}><%= render_slot(@inner_block) %>
"""
end
The :include
option is useful to apply global additions on a case-by-case basis, but
sometimes you want attributes to be available to all globals you provide, such
as when using frameworks that use attribute prefixes, like Alpine.js's x-on:click
.
For these cases, custom global attribute prefixes can be provided, which we'll outline
next.
custom-global-attribute-prefixes
Custom Global Attribute Prefixes
You can extend the set of global attributes by providing a list of attribute prefixes to
use Phoenix.Component
. Like the default attributes common to all HTML elements,
any number of attributes that start with a global prefix will be accepted by function
components defined in this module. By default, the following prefixes are supported:
phx-
, aria-
, and data-
. For example, to support the x-
prefix used by
Alpine.js, you can pass the :global_prefixes
option to
use Phoenix.Component
:
use Phoenix.Component, global_prefixes: ~w(x-)
Now all function components defined in this module will accept any number of attributes prefixed
with x-
, in addition to the default global prefixes.
You can learn more about attributes by reading the documentation for attr/3
.
slots
Slots
In addition to attributes, function components can accept blocks of HEEx content, referred to
as slots. Slots enable further customization of the rendered HTML, as the caller can pass the
function component HEEx content they want the component to render. Phoenix.Component
provides
the slot/3
macro used to declare slots for function components:
slot :inner_block, required: true
def button(assigns) do
~H"""
<button>
<%= render_slot(@inner_block) %>
</button>
"""
end
The expression render_slot(@inner_block)
renders the HEEx content. You can invoke this function
component like so:
<.button>
This renders <strong>inside</strong> the button!
</.button>
Which renders the following HTML:
<button>
This renders <strong>inside</strong> the button!
</button>
Like the attr/3
macro, using the slot/3
macro will provide compile-time validations.
For example, invoking button/1
without a slot of HEEx content will result in a compilation
warning being emitted:
<.button />
<!-- warning: missing required slot "inner_block" for component MyAppWeb.MyComponent.button/1
lib/app_web/my_component.ex:15 -->
the-default-slot
The Default Slot
The example above uses the default slot, accessible as an assign named @inner_block
, to render
HEEx content via the render_slot/2
function.
If the values rendered in the slot need to be dynamic, you can pass a second value back to the
HEEx content by calling render_slot/2
:
slot :inner_block, required: true
attr :entries, :list, default: []
def unordered_list(assigns) do
~H"""
<ul>
<%= for entry <- @entries do %>
<li><%= render_slot(@inner_block, entry) %></li>
<% end %>
</ul>
"""
end
When invoking the function component, you can use the special attribute :let
to take the value
that the function component passes back and bind it to a variable:
<.unordered_list :let={fruit} entries={~w(apples bananas cherries)}>
I like <%= fruit %>!
</.unordered_list>
Rendering the following HTML:
<ul>
<li>I like apples!</li>
<li>I like bananas!</li>
<li>I like cherries!</li>
</ul>
Now the separation of concerns is maintained: the caller can specify multiple values in a list attribute without having to specify the HEEx content that surrounds and separates them.
named-slots
Named Slots
In addition to the default slot, function components can accept multiple, named slots of HEEx content. For example, imagine you want to create a modal that has a header, body, and footer:
slot :header
slot :inner_block, required: true
slot :footer, required: true
def modal(assigns) do
~H"""
<div class="modal">
<div class="modal-header">
<%= render_slot(@header) || "Modal" %>
</div>
<div class="modal-body">
<%= render_slot(@inner_block) %>
</div>
<div class="modal-footer">
<%= render_slot(@footer) %>
</div>
</div>
"""
end
You can invoke this function component using the named slot HEEx syntax:
<.modal>
This is the body, everything not in a named slot is rendered in the default slot.
<:footer>
This is the bottom of the modal.
</:footer>
</.modal>
Rendering the following HTML:
<div class="modal">
<div class="modal-header">
Modal.
</div>
<div class="modal-body">
This is the body, everything not in a named slot is rendered in the default slot.
</div>
<div class="modal-footer">
This is the bottom of the modal.
</div>
</div>
As shown in the example above, render_slot/1
returns nil
when an optional slot
is declared and none is given. This can be used to attach default behaviour.
slot-attributes
Slot Attributes
Unlike the default slot, it is possible to pass a named slot multiple pieces of HEEx content.
Named slots can also accept attributes, defined by passing a block to the slot/3
macro.
If multiple pieces of content are passed, render_slot/2
will merge and render all the values.
Below is a table component illustrating multiple named slots with attributes:
slot :column, doc: "Columns with column labels" do
attr :label, :string, required: true, doc: "Column label"
end
attr :rows, :list, default: []
def table(assigns) do
~H"""
<table>
<tr>
<%= for col <- @column do %>
<th><%= col.label %></th>
<% end %>
</tr>
<%= for row <- @rows do %>
<tr>
<%= for col <- @column do %>
<td><%= render_slot(col, row) %></td>
<% end %>
</tr>
<% end %>
</table>
"""
end
You can invoke this function component like so:
<.table rows={[%{name: "Jane", age: "34"}, %{name: "Bob", age: "51"}]}>
<:column :let={user} label="Name">
<%= user.name %>
</:column>
<:column :let={user} label="Age">
<%= user.age %>
</:column>
</.table>
Rendering the following HTML:
<table>
<tr>
<th>Name</th>
<th>Age</th>
</tr>
<tr>
<td>Jane</td>
<td>34</td>
</tr>
<tr>
<td>Bob</td>
<td>51</td>
</tr>
</table>
You can learn more about slots and the slot/3
macro in its documentation.
Link to this section Summary
Components
Generates a dynamically named HTML tag.
Wraps tab focus around a container for accessibility.
Renders a form.
Generates a link for live and href navigation.
A function component for rendering Phoenix.LiveComponent
within a parent LiveView.
Builds a file input tag for a LiveView upload.
Generates an image preview on the client for a selected file.
Renders a title with automatic prefix/suffix on @page_title
updates.
Functions
Adds key-value pairs to assigns.
Adds a key
-value
pair to socket_or_assigns
.
Assigns the given key
with value from fun
into socket_or_assigns
if one does not yet exist.
Filters the assigns as a list of keywords for use in dynamic tag attributes.
Declares attributes for a HEEx function components.
Checks if the given key changed in socket_or_assigns
.
Intersperses separator slot between an enumerable.
Returns the flash message from the LiveView flash assign.
Renders a LiveView within a template.
Renders a slot entry with the given optional argument
.
The ~H
sigil for writing HEEx templates inside source files.
Declares a slot. See slot/3
for more information.
Declares a function component slot.
Updates an existing key
with fun
in the given socket_or_assigns
.
Returns the entry errors for an upload.
Returns the entry errors for an upload.
Link to this section Components
Generates a dynamically named HTML tag.
Raises an ArgumentError
if the tag name is found to be unsafe HTML.
attributes
Attributes
name
(:string
) (required) - The name of the tag, such asdiv
.rest
(:global
) - Additional HTML attributes to add to the tag, ensuring proper escaping.
slots
Slots
inner_block
examples
Examples
<.dynamic_tag name="input" type="text"/>
<input type="text"/>
<.dynamic_tag name="p">content</.dynamic_tag>
<p>content</p>
Wraps tab focus around a container for accessibility.
This is an essential accessibility feature for interfaces such as modals, dialogs, and menus.
attributes
Attributes
id
(:string
) (required) - The DOM identifier of the container tag.rest
(:global
) - Additional HTML attributes to add to the container tag.
slots
Slots
inner_block
(required) - The content rendered inside of the container tag.
examples
Examples
Simply render your inner content within this component and focus will be wrapped around the container as the user tabs through the containers content:
<.focus_wrap id="my-modal" class="bg-white">
<div id="modal-content">
Are you sure?
<button phx-click="cancel">Cancel</button>
<button phx-click="confirm">OK</button>
</div>
</.focus_wrap>
Renders a form.
attributes
Attributes
for
(:any
) (required) - The form source data.action
(:string
) - The action to submit the form on. This attribute must be given if you intend to submit the form to a URL without LiveView.Defaults to
nil
.as
(:atom
) - The server side parameter in which all params for this form will be collected (i.e.as: :user_params
would mean all fields for this form will be accessed asconn.params.user_params
server side). Automatically inflected when a changeset is given.Defaults to
nil
.multipart
(:boolean
) - Setsenctype
tomultipart/form-data
. Required when uploading files.Defaults to
false
.method
(:string
) - The HTTP method. It is only used if an:action
is given. If the method is notget
norpost
, an input tag with name_method
is generated alongside the form tag.csrf_token
(:any
) - A token to authenticate the validity of requests. One is automatically generated when an action is given and the method is notget
. When set tofalse
, no token is generated.errors
(:list
) - Use this to manually pass a keyword list of errors to the form, e.g.conn.assigns[:errors]
. This option is only used when a connection is used as the form source and it will make the errors available underf.errors
.Defaults to
[]
.rest
(:global
) - Additional HTML attributes to add to the form tag. Supports all globals plus:["autocomplete", "name", "rel", "enctype", "novalidate", "target"]
.
slots
Slots
inner_block
(required) - The content rendered inside of the form tag.
This function is built on top of Phoenix.HTML.Form.form_for/4
.
For more information about options and how to build inputs, see Phoenix.HTML.Form
.
examples
Examples
inside-liveview
Inside LiveView
The :for
attribute is typically an
Ecto.Changeset
:
<.form
:let={f}
for={@changeset}
phx-change="change_name"
>
<%= text_input f, :name %>
</.form>
<.form
:let={user_form}
for={@changeset}
multipart
phx-change="change_user"
phx-submit="save_user"
>
<%= text_input user_form, :name %>
<%= submit "Save" %>
</.form>
Notice how both examples use phx-change
. The LiveView must implement the phx-change
event
and store the input values as they arrive on change. This is important because, if an unrelated
change happens on the page, LiveView should re-render the inputs with their updated values.
Without phx-change
, the inputs would otherwise be cleared. Alternatively, you can use
phx-update="ignore"
on the form to discard any updates.
The :for
attribute can also be an atom, in case you don't have an existing data layer but you
want to use the existing form helpers. In this case, you need to pass the input values explicitly
as they change (or use phx-update="ignore"
as per the previous paragraph):
<.form :let={user_form} for={:user} multipart phx-change="change_user" phx-submit="save_user">
<%= text_input user_form, :name, value: @user_name %>
<%= submit "Save" %>
</.form>
In those cases, it may be more straight-forward to drop :let
altogether and simply rely on
HTML to generate inputs:
<.form for={:form} multipart phx-change="change_user" phx-submit="save_user">
<input type="text" name="user[name]" value={@user_name}>
<input type="submit" name="Save">
</.form>
outside-liveview
Outside LiveView
The form
component can still be used to submit forms outside of LiveView. In such cases, the
action
attribute MUST be given. Without said attribute, the form
method and csrf token are
discarded.
<.form :let={f} for={@changeset} action={Routes.comment_path(:create, @comment)}>
<%= text_input f, :body %>
</.form>
Generates a link for live and href navigation.
attributes
Attributes
navigate
(:string
) - Navigates from a LiveView to a new LiveView. The browser page is kept, but a new LiveView process is mounted and its content on the page is reloaded. It is only possible to navigate between LiveViews declared under the same routerPhoenix.LiveView.Router.live_session/3
. Otherwise, a full browser redirect is used.patch
(:string
) - Patches the current LiveView. Thehandle_params
callback of the current LiveView will be invoked and the minimum content will be sent over the wire, as any other LiveView diff.href
(:any
) - Uses traditional browser navigation to the new location. This means the whole page is reloaded on the browser.replace
(:boolean
) - When using:patch
or:navigate
, should the browser's history be replaced withpushState
?Defaults to
false
.method
(:string
) - The HTTP method to use with the link. In case the method is notget
, the link is generated inside the form which sets the proper information. In order to submit the form, JavaScript must be enabled in the browser.Defaults to
"get"
.csrf_token
(:any
) - A boolean or custom token to use for links with an HTTP method other thanget
. Defaults totrue
.rest
(:global
) - Additional HTML attributes added to thea
tag. Supports all globals plus:["download", "hreflang", "referrerpolicy", "rel", "target", "type"]
.
slots
Slots
inner_block
(required) - The content rendered inside of thea
tag.
examples
Examples
<.link href="/">Regular anchor link</.link>
<.link navigate={Routes.page_path(@socket, :index)} class="underline">home</.link>
<.link navigate={Routes.live_path(@socket, MyLive, dir: :asc)} replace={false}>
Sort By Price
</.link>
<.link patch={Routes.page_path(@socket, :index, :details)}>view details</.link>
<.link href={URI.parse("https://elixir-lang.org")}>hello</.link>
<.link href="/the_world" method={:delete} data-confirm="Really?">delete</.link>
javascript-dependency
JavaScript dependency
In order to support links where :method
is not :get
or use the above data attributes,
Phoenix.HTML
relies on JavaScript. You can load priv/static/phoenix_html.js
into your
build tool.
data-attributes
Data attributes
Data attributes are added as a keyword list passed to the data
key. The following data
attributes are supported:
data-confirm
- shows a confirmation prompt before generating and submitting the form when:method
is not:get
.
overriding-the-default-confirm-behaviour
Overriding the default confirm behaviour
phoenix_html.js
does trigger a custom event phoenix.link.click
on the clicked DOM element
when a click happened. This allows you to intercept the event on it's way bubbling up
to window
and do your own custom logic to enhance or replace how the data-confirm
attribute is handled. You could for example replace the browsers confirm()
behavior with
a custom javascript implementation:
// listen on document.body, so it's executed before the default of
// phoenix_html, which is listening on the window object
document.body.addEventListener('phoenix.link.click', function (e) {
// Prevent default implementation
e.stopPropagation();
// Introduce alternative implementation
var message = e.target.getAttribute("data-confirm");
if(!message){ return true; }
vex.dialog.confirm({
message: message,
callback: function (value) {
if (value == false) { e.preventDefault(); }
}
})
}, false);
Or you could attach your own custom behavior.
window.addEventListener('phoenix.link.click', function (e) {
// Introduce custom behaviour
var message = e.target.getAttribute("data-prompt");
var answer = e.target.getAttribute("data-prompt-answer");
if(message && answer && (answer != window.prompt(message))) {
e.preventDefault();
}
}, false);
The latter could also be bound to any click
event, but this way you can be sure your custom
code is only executed when the code of phoenix_html.js
is run.
csrf-protection
CSRF Protection
By default, CSRF tokens are generated through Plug.CSRFProtection
.
A function component for rendering Phoenix.LiveComponent
within a parent LiveView.
While LiveView
s can be nested, each LiveView starts its own process. A LiveComponent
provides
similar functionality to LiveView
, except they run in the same process as the LiveView
,
with its own encapsulated state. That's why they are called stateful components.
attributes
Attributes
id
(:string
) (required) - A unique identifier for the LiveComponent. Note theid
won't necessarily be used as the DOMid
. That is up to the component to decide.module
(:atom
) (required) - The LiveComponent module to render.
Any additional attributes provided will be passed to the LiveComponent as a map of assigns.
See Phoenix.LiveComponent
for more information.
examples
Examples
<.live_component module={MyApp.WeatherComponent} id="thermostat" city="Kraków" />
Builds a file input tag for a LiveView upload.
attributes
Attributes
:upload
- The%Phoenix.LiveView.UploadConfig{}
struct.
Arbitrary attributes may be passed to be applied to the file input tag.
drag-and-drop
Drag and Drop
Drag and drop is supported by annotating the droppable container with a phx-drop-target
attribute pointing to the DOM id
of the file input. By default, the file input id
is the
upload ref
, so the following markup is all that is required for drag and drop support:
<div class="container" phx-drop-target={@uploads.avatar.ref}>
<!-- ... -->
<.live_file_input upload={@uploads.avatar} />
</div>
examples
Examples
<.live_file_input upload={@uploads.avatar} />
Generates an image preview on the client for a selected file.
examples
Examples
<%= for entry <- @uploads.avatar.entries do %>
<.live_img_preview entry={entry} width="75" />
<% end %>
Renders a title with automatic prefix/suffix on @page_title
updates.
attributes
Attributes
prefix
(:string
) - A prefix added before the content ofinner_block
. Defaults tonil
.suffix
(:string
) - A suffix added after the content ofinner_block
. Defaults tonil
.
slots
Slots
inner_block
(required) - Content rendered inside thetitle
tag.
examples
Examples
<.live_title prefix="MyApp – ">
<%= assigns[:page_title] || "Welcome" %>
</.live_title>
<.live_title suffix="- MyApp">
<%= assigns[:page_title] || "Welcome" %>
</.live_title>
Link to this section Functions
Adds key-value pairs to assigns.
The first argument is either a LiveView socket
or an assigns
map from function components.
A keyword list or a map of assigns must be given as argument to be merged into existing assigns.
examples
Examples
iex> assign(socket, name: "Elixir", logo: "💧")
iex> assign(socket, %{name: "Elixir"})
Adds a key
-value
pair to socket_or_assigns
.
The first argument is either a LiveView socket
or an assigns
map from function components.
examples
Examples
iex> assign(socket, :name, "Elixir")
Assigns the given key
with value from fun
into socket_or_assigns
if one does not yet exist.
The first argument is either a LiveView socket
or an assigns
map from function components.
This function is useful for lazily assigning values and referencing parent assigns. We will cover both use cases next.
lazy-assigns
Lazy assigns
Imagine you have a function component that accepts a color:
<.my_component color="red" />
The color is also optional, so you can skip it:
<.my_component />
In such cases, the implementation can use assign_new
to lazily
assign a color if none is given. Let's make it so it picks a random one
when none is given:
def my_component(assigns) do
assigns = assign_new(assigns, :color, fn -> Enum.random(~w(red green blue)) end)
~H"""
<div class={"bg-#{@color}"}>
Example
</div>
"""
end
referencing-parent-assigns
Referencing parent assigns
When a user first accesses an application using LiveView, the LiveView is first rendered in its
disconnected state, as part of a regular HTML response. In some cases, there may be data that is
shared by your Plug pipelines and your LiveView, such as the :current_user
assign.
By using assign_new
in the mount callback of your LiveView, you can instruct LiveView to
re-use any assigns set in your Plug pipelines as part of Plug.Conn
, avoiding sending additional
queries to the database. Imagine you have a Plug that does:
# A plug
def authenticate(conn, _opts) do
if user_id = get_session(conn, :user_id) do
assign(conn, :current_user, Accounts.get_user!(user_id))
else
send_resp(conn, :forbidden)
end
end
You can re-use the :current_user
assign in your LiveView during the initial render:
def mount(_params, %{"user_id" => user_id}, socket) do
{:ok, assign_new(socket, :current_user, fn -> Accounts.get_user!(user_id) end)}
end
In such case conn.assigns.current_user
will be used if present. If there is no such
:current_user
assign or the LiveView was mounted as part of the live navigation, where no Plug
pipelines are invoked, then the anonymous function is invoked to execute the query instead.
LiveView is also able to share assigns via assign_new
within nested LiveView. If the parent
LiveView defines a :current_user
assign and the child LiveView also uses assign_new/3
to
fetch the :current_user
in its mount/3
callback, as above, the assign will be fetched from
the parent LiveView, once again avoiding additional database queries.
Note that fun
also provides access to the previously assigned values:
assigns =
assigns
|> assign_new(:foo, fn -> "foo" end)
|> assign_new(:bar, fn %{foo: foo} -> foo <> "bar" end)
Filters the assigns as a list of keywords for use in dynamic tag attributes.
Useful for transforming caller assigns into dynamic attributes while stripping reserved keys from the result.
examples
Examples
Imagine the following my_link
component which allows a caller
to pass a new_window
assign, along with any other attributes they
would like to add to the element, such as class, data attributes, etc:
<.my_link href="/" id={@id} new_window={true} class="my-class">Home</.my_link>
We could support the dynamic attributes with the following component:
def my_link(assigns) do
target = if assigns[:new_window], do: "_blank", else: false
extra = assigns_to_attributes(assigns, [:new_window])
assigns =
assigns
|> assign(:target, target)
|> assign(:extra, extra)
~H"""
<a href={@href} target={@target} {@extra}>
<%= render_slot(@inner_block) %>
</a>
"""
end
The above would result in the following rendered HTML:
<a href="/" target="_blank" id="1" class="my-class">Home</a>
The second argument (optional) to assigns_to_attributes
is a list of keys to
exclude. It typically includes reserved keys by the component itself, which either
do not belong in the markup, or are already handled explicitly by the component.
Declares attributes for a HEEx function components.
arguments
Arguments
name
- an atom defining the name of the attribute. Note that attributes cannot define the same name as any other attributes or slots declared for the same component.type
- an atom defining the type of the attribute.opts
- a keyword list of options. Defaults to[]
.
types
Types
An attribute is declared by its name, type, and options. The following types are supported:
Name | Description |
---|---|
:any | any term |
:string | any binary string |
:atom | any atom (including true , false , and nil ) |
:boolean | any boolean |
:integer | any integer |
:float | any float |
:list | any list of any arbitrary types |
:global | any common HTML attributes, plus those defined by :global_prefixes |
A struct module | any module that defines a struct with defstruct/1 |
options
Options
:required
- marks an attribute as required. If a caller does not pass the given attribute, a compile warning is issued.:default
- the default value for the attribute if not provided. If this option is not set and the attribute is not given, accessing the attribute will fail unless a value is explicitly set withassign_new/3
.:examples
- a non-exhaustive list of values accepted by the attribute, used for documentation purposes.:values
- an exhaustive list of values accepted by the attributes. If a caller passes a literal not contained in this list, a compile warning is issued.:doc
- documentation for the attribute.
compile-time-validations
Compile-Time Validations
LiveView performs some validation of attributes via the :phoenix_live_view
compiler.
When attributes are defined, LiveView will warn at compilation time on the caller if:
A required attribute of a component is missing.
An unknown attribute is given.
You specify a literal attribute (such as
value="string"
orvalue
, but notvalue={expr}
) and the type does not match. The following types currently support literal validation::string
,:atom
,:boolean
,:integer
,:float
, and:list
.You specify a literal attribute and it is not a member of the
:values
list.
LiveView does not perform any validation at runtime. This means the type information is mostly used for documentation and reflection purposes.
On the side of the LiveView component itself, defining attributes provides the following quality of life improvements:
The default value of all attributes will be added to the
assigns
map upfront. Note that unless an attribute is marked as required or has a default defined, omitting a value for an attribute will result innil
being passed as the default value to theassigns
map, regardless of the type defined for the attribute.Attribute documentation is generated for the component.
Required struct types are annotated and emit compilation warnings. For example, if you specify
attr :user, User, required: true
and then you write@user.non_valid_field
in your template, a warning will be emitted.Calls made to the component are tracked for reflection and validation purposes.
documentation-generation
Documentation Generation
Public function components that define attributes will have their attribute
types and docs injected into the function's documentation, depending on the
value of the @doc
module attribute:
if
@doc
is a string, the attribute docs are injected into that string. The optional placeholder[INSERT LVATTRDOCS]
can be used to specify where in the string the docs are injected. Otherwise, the docs are appended to the end of the@doc
string.if
@doc
is unspecified, the attribute docs are used as the default@doc
string.if
@doc
isfalse
, the attribute docs are omitted entirely.
The injected attribute docs are formatted as a markdown list:
name
(:type
) (required) - attr docs. Defaults to:default
.
By default, all attributes will have their types and docs injected into the function @doc
string. To hide a specific attribute, you can set the value of :doc
to false
.
example
Example
attr :name, :string, required: true
attr :age, :integer, required: true
def celebrate(assigns) do
~H"""
<p>
Happy birthday <%= @name %>!
You are <%= @age %> years old.
</p>
"""
end
Checks if the given key changed in socket_or_assigns
.
The first argument is either a LiveView socket
or an assigns
map from function components.
examples
Examples
iex> changed?(socket, :count)
Intersperses separator slot between an enumerable.
Useful when you need to add a separator between items such as when rendering breadcrumbs for navigation. Provides each item to the inner block.
examples
Examples
<.intersperse :let={item} enum={["home", "profile", "settings"]}>
<:separator>
<span class="sep">|</span>
</:separator>
<%= item.name %>
</.intersperse>
Renders the following markup:
home <span class="sep">|</span> profile <span class="sep">|</span> settings
attributes
Attributes
enum
(:any
) (required) - the enumerable to intersperse with separators.
slots
Slots
inner_block
(required) - the inner_block to render for each item.separator
(required) - the slot for the separator.
Returns the flash message from the LiveView flash assign.
examples
Examples
<p class="alert alert-info"><%= live_flash(@flash, :info) %></p>
<p class="alert alert-danger"><%= live_flash(@flash, :error) %></p>
Renders a LiveView within a template.
This is useful in two situations:
When rendering a child LiveView inside a LiveView.
When rendering a LiveView inside a regular (non-live) controller/view.
options
Options
:session
- a map of binary keys with extra session data to be serialized and sent to the client. All session data currently in the connection is automatically available in LiveViews. You can use this option to provide extra data. Remember all session data is serialized and sent to the client, so you should always keep the data in the session to a minimum. For example, instead of storing a User struct, you should store the "user_id" and load the User when the LiveView mounts.:container
- an optional tuple for the HTML tag and DOM attributes to be used for the LiveView container. For example:{:li, style: "color: blue;"}
. By default it uses the module definition container. See the "Containers" section below for more information.:id
- both the DOM ID and the ID to uniquely identify a LiveView. An:id
is automatically generated when rendering root LiveViews but it is a required option when rendering a child LiveView.:sticky
- an optional flag to maintain the LiveView across live redirects, even if it is nested within another LiveView. If you are rendering the sticky view within your live layout, make sure that the sticky view itself does not use the same layout. You can do so by returning{:ok, socket, layout: false}
from mount.
examples
Examples
When rendering from a controller/view, you can call:
<%= live_render(@conn, MyApp.ThermostatLive) %>
Or:
<%= live_render(@conn, MyApp.ThermostatLive, session: %{"home_id" => @home.id}) %>
Within another LiveView, you must pass the :id
option:
<%= live_render(@socket, MyApp.ThermostatLive, id: "thermostat") %>
containers
Containers
When a LiveView
is rendered, its contents are wrapped in a container. By default,
the container is a div
tag with a handful of LiveView
specific attributes.
The container can be customized in different ways:
You can change the default
container
onuse Phoenix.LiveView
:use Phoenix.LiveView, container: {:tr, id: "foo-bar"}
You can override the container tag and pass extra attributes when calling
live_render
(as well as on yourlive
call in your router):live_render socket, MyLiveView, container: {:tr, class: "highlight"}
Renders a slot entry with the given optional argument
.
<%= render_slot(@inner_block, @form) %>
If the slot has no entries, nil is returned.
If multiple slot entries are defined for the same slot,render_slot/2
will automatically render
all entries, merging their contents. In case you want to use the entries' attributes, you need
to iterate over the list to access each slot individually.
For example, imagine a table component:
<.table rows={@users}>
<:col :let={user} label="Name">
<%= user.name %>
</:col>
<:col :let={user} label="Address">
<%= user.address %>
</:col>
</.table>
At the top level, we pass the rows as an assign and we define a :col
slot for each column we
want in the table. Each column also has a label
, which we are going to use in the table header.
Inside the component, you can render the table with headers, rows, and columns:
def table(assigns) do
~H"""
<table>
<tr>
<%= for col <- @col do %>
<th><%= col.label %></th>
<% end %>
</tr>
<%= for row <- @rows do %>
<tr>
<%= for col <- @col do %>
<td><%= render_slot(col, row) %></td>
<% end %>
</tr>
<% end %>
</table>
"""
end
The ~H
sigil for writing HEEx templates inside source files.
Note: The HEEx HTML formatter requires Elixir >= 1.13.4. See the
Phoenix.LiveView.HTMLFormatter
for more information on template formatting.
HEEx
is a HTML-aware and component-friendly extension of Elixir Embedded
language (EEx
) that provides:
Built-in handling of HTML attributes.
An HTML-like notation for injecting function components.
Compile-time validation of the structure of the template.
The ability to minimize the amount of data sent over the wire.
example
Example
~H"""
<div title="My div" class={@class}>
<p>Hello <%= @name %></p>
<MyApp.Weather.city name="Kraków"/>
</div>
"""
syntax
Syntax
HEEx
is built on top of Embedded Elixir (EEx
). In this section, we are going to
cover the basic constructs in HEEx
templates as well as its syntax extensions.
interpolation
Interpolation
Both HEEx
and EEx
templates use <%= ... %>
for interpolating code inside the body
of HTML tags:
<p>Hello, <%= @name %></p>
Similarly, conditionals and other block Elixir constructs are supported:
<%= if @show_greeting? do %>
<p>Hello, <%= @name %></p>
<% end %>
Note we don't include the equal sign =
in the closing <% end %>
tag
(because the closing tag does not output anything).
There is one important difference between HEEx
and Elixir's builtin EEx
.
HEEx
uses a specific annotation for interpolating HTML tags and attributes.
Let's check it out.
heex-extension-defining-attributes
HEEx extension: Defining attributes
Since HEEx
must parse and validate the HTML structure, code interpolation using
<%= ... %>
and <% ... %>
are restricted to the body (inner content) of the
HTML/component nodes and it cannot be applied within tags.
For instance, the following syntax is invalid:
<div class="<%= @class %>">
...
</div>
Instead do:
<div class={@class}>
...
</div>
You can put any Elixir expression between { ... }
. For example, if you want
to set classes, where some are static and others are dynamic, you can using
string interpolation:
<div class={"btn btn-#{@type}"}>
...
</div>
The following attribute values have special meaning:
true
- if a value istrue
, the attribute is rendered with no value at all. For example,<input required={true}>
is the same as<input required>
;false
ornil
- if a value isfalse
ornil
, the attribute is not rendered;list
(only for theclass
attribute) - each element of the list is processed as a different class.nil
andfalse
elements are discarded.
For multiple dynamic attributes, you can use the same notation but without assigning the expression to any specific attribute.
<div {@dynamic_attrs}>
...
</div>
The expression inside {...}
must be either a keyword list or a map containing
the key-value pairs representing the dynamic attributes.
You can pair this notation assigns_to_attributes/2
to strip out any internal
LiveView attributes and user-defined assigns from being expanded into the HTML tag:
<div {assigns_to_attributes(assigns, [:visible])}>
...
</div>
The above would add all caller attributes into the HTML, but strip out LiveView
assigns like slots, as well as user-defined assigns like :visible
that are not
meant to be added to the HTML itself. This approach is useful to allow a component
to accept arbitrary HTML attributes like class, ARIA attributes, etc.
heex-extension-defining-function-components
HEEx extension: Defining function components
Function components are stateless components implemented as pure functions
with the help of the Phoenix.Component
module. They can be either local
(same module) or remote (external module).
HEEx
allows invoking these function components directly in the template
using an HTML-like notation. For example, a remote function:
<MyApp.Weather.city name="Kraków"/>
A local function can be invoked with a leading dot:
<.city name="Kraków"/>
where the component could be defined as follows:
defmodule MyApp.Weather do
use Phoenix.Component
def city(assigns) do
~H"""
The chosen city is: <%= @name %>.
"""
end
def country(assigns) do
~H"""
The chosen country is: <%= @name %>.
"""
end
end
It is typically best to group related functions into a single module, as
opposed to having many modules with a single render/1
function. Function
components support other important features, such as slots. You can learn
more about components in Phoenix.Component
.
heex-extension-special-attributes
HEEx extension: special attributes
Apart from normal HTML attributes, HEEx also support some special attributes
such as :let
and :for
.
:let
This is used by components and slots that want to yield a value back to the
caller. For an example, see how form/1
works:
<.form :let={f} for={@changeset} phx-change="validate" phx-submit="save">
<%= label(f, :username) %>
<%= text_input(f, :username) %>
...
</.form>
Notice how the variable f
, defined by .form
, is used by label
and
text_input
. The Phoenix.Component
module has detailed documentation on
how to use and implement such functionality.
:if and :for
It is a syntax sugar for <%= if .. do %>
and <%= for .. do %>
that can be
used in regular HTML, function components, and slots.
For example in an HTML tag:
<table id="admin-table" :if={@admin?}>
<tr :for={user <- @users}>
<td><%= user.name %>
</tr>
<table>
The snippet above will only render the table if @admin?
is true,
and generate a tr
per user as you would expect from the collection.
:for
can be used similarly in function components:
<.error :for={msg <- @errors} message={msg}/>
Which is equivalent to writing:
<%= for msg <- @errors do %>
<.error message={msg} />
<% end %>
And :for
in slots behaves the same way:
<.table id="my-table" rows={@users}>
<:col :for={header <- @headers} let={user}>
<td><%= user[:header] %></td>
</:col>
<table>
You can also combine :for
and :if
for tags, components, and slot to act as a filter:
<.error :for={msg <- @errors} :if={msg != nil} message={msg} />
Declares a slot. See slot/3
for more information.
Declares a function component slot.
arguments
Arguments
name
- an atom defining the name of the slot. Note that slots cannot define the same name as any other slots or attributes declared for the same component.opts
- a keyword list of options. Defaults to[]
.block
- a code block containing calls toattr/3
. Defaults tonil
.
options
Options
:required
- marks a slot as required. If a caller does not pass a value for a required slot, a compilation warning is emitted. Otherwise, an omitted slot will default to[]
.:doc
- documentation for the slot. Any slot attributes declared will have their documentation listed alongside the slot.
slot-attributes
Slot Attributes
A named slot may declare attributes by passing a block with calls to attr/3
.
Unlike attributes, slot attributes cannot accept the :default
option. Passing one
will result in a compile warning being issued.
the-default-slot
The Default Slot
The default slot can be declared by passing :inner_block
as the name
of the slot.
Note that the :inner_block
slot declaration cannot accept a block. Passing one will
result in a compilation error.
compile-time-validations
Compile-Time Validations
LiveView performs some validation of slots via the :phoenix_live_view
compiler.
When slots are defined, LiveView will warn at compilation time on the caller if:
A required slot of a component is missing.
An unknown slot is given.
An unknown slot attribute is given.
On the side of the function component itself, defining attributes provides the following quality of life improvements:
Slot documentation is generated for the component.
Calls made to the component are tracked for reflection and validation purposes.
documentation-generation
Documentation Generation
Public function components that define slots will have their docs injected into the function's
documentation, depending on the value of the @doc
module attribute:
if
@doc
is a string, the slot docs are injected into that string. The optional placeholder[INSERT LVATTRDOCS]
can be used to specify where in the string the docs are injected. Otherwise, the docs are appended to the end of the@doc
string.if
@doc
is unspecified, the slot docs are used as the default@doc
string.if
@doc
isfalse
, the slot docs are omitted entirely.
The injected slot docs are formatted as a markdown list:
name
(required) - slot docs. Accepts attributes:name
(:type
) (required) - attr docs. Defaults to:default
.
By default, all slots will have their docs injected into the function @doc
string.
To hide a specific slot, you can set the value of :doc
to false
.
example
Example
slot :header
slot :inner_block, required: true
slot :footer
def modal(assigns) do
~H"""
<div class="modal">
<div class="modal-header">
<%= render_slot(@header) || "Modal" %>
</div>
<div class="modal-body">
<%= render_slot(@inner_block) %>
</div>
<div class="modal-footer">
<%= render_slot(@footer) || submit_button() %>
</div>
</div>
"""
end
As shown in the example above, render_slot/1
returns nil
when an optional slot is declared
and none is given. This can be used to attach default behaviour.
Updates an existing key
with fun
in the given socket_or_assigns
.
The first argument is either a LiveView socket
or an assigns
map from function components.
The update function receives the current key's value and returns the updated value. Raises if the key does not exist.
The update function may also be of arity 2, in which case it receives the current key's value as the first argument and the current assigns as the second argument. Raises if the key does not exist.
examples
Examples
iex> update(socket, :count, fn count -> count + 1 end)
iex> update(socket, :count, &(&1 + 1))
iex> update(socket, :max_users_this_session, fn current_max, %{users: users} ->
max(current_max, length(users))
end)
Returns the entry errors for an upload.
The following error may be returned:
:too_many_files
- The number of selected files exceeds the:max_entries
constraint
examples
Examples
def error_to_string(:too_many_files), do: "You have selected too many files"
<%= for err <- upload_errors(@uploads.avatar) do %>
<div class="alert alert-danger">
<%= error_to_string(err) %>
</div>
<% end %>
Returns the entry errors for an upload.
The following errors may be returned:
:too_large
- The entry exceeds the:max_file_size
constraint:not_accepted
- The entry does not match the:accept
MIME types
examples
Examples
def error_to_string(:too_large), do: "Too large"
def error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
<%= for entry <- @uploads.avatar.entries do %>
<%= for err <- upload_errors(@uploads.avatar, entry) do %>
<div class="alert alert-danger">
<%= error_to_string(err) %>
</div>
<% end %>
<% end %>