RDF.ex v0.6.0 RDF.Graph View Source

A set of RDF triples with an optional name.

RDF.Graph implements:

Link to this section Summary

Functions

Adds triples to a RDF.Graph.

Clears all prefixes of the given graph.

Deletes statements from a RDF.Graph.

Deletes prefixes from the given graph.

Deletes all statements with the given subjects.

Checks if a RDF.Graph contains statements about the given resource.

The RDF.Description of the given subject.

Checks if two RDF.Graphs are equal.

Fetches the description of the given subject.

Gets the description of the given subject.

Gets and updates the description of the given subject, in a single pass.

Checks if the given statement exists within a RDF.Graph.

Creates an empty unnamed RDF.Graph.

Creates an RDF.Graph initialized with data.

The set of all resources used in the objects within a RDF.Graph.

Pops an arbitrary triple from a RDF.Graph.

Pops the description of the given subject.

The set of all properties used in the predicates of the statements within a RDF.Graph.

Adds statements to a RDF.Graph and overwrites all existing statements with the same subjects and predicates.

Add statements to a RDF.Graph, overwriting all statements with the same subject and predicate.

Add statements to a RDF.Graph, overwriting all statements with the same subject and predicate.

The set of all resources used within a RDF.Graph.

The number of subjects within a RDF.Graph.

The set of all subjects used in the statements within a RDF.Graph.

The number of statements within a RDF.Graph.

The list of all statements within a RDF.Graph.

Returns a nested map of the native Elixir values of a RDF.Graph.

Link to this section Types

Link to this section Functions

Adds triples to a RDF.Graph.

When the statements to be added are given as another RDF.Graph, the graph name must not match graph name of the graph to which the statements are added. As opposed to that RDF.Data.merge/2 will produce a RDF.Dataset containing both graphs.

Also when the statements to be added are given as another RDF.Graph, the prefixes of this graph will be added. In case of conflicting prefix mappings the original prefix from graph will be kept.

Link to this function

add(graph, subject, predicate, objects) View Source

Adds triples to a RDF.Graph.

Link to this function

add_prefixes(graph, prefixes, conflict_resolver \\ nil) View Source

Adds prefixes to the given graph.

The prefixes mappings can be given as any structure convertible to a RDF.PrefixMap.

When a prefix with another mapping already exists it will be overwritten with the new one. This behaviour can be customized by providing a conflict_resolver function. See RDF.PrefixMap.merge/3 for more on that.

Clears all prefixes of the given graph.

Deletes statements from a RDF.Graph.

Note: When the statements to be deleted are given as another RDF.Graph, the graph name must not match graph name of the graph from which the statements are deleted. If you want to delete only graphs with matching names, you can use RDF.Data.delete/2.

Link to this function

delete(graph, subject, predicate, object) View Source

Deletes statements from a RDF.Graph.

Link to this function

delete_prefixes(graph, prefixes) View Source

Deletes prefixes from the given graph.

The prefixes can be a single prefix or a list of prefixes. Prefixes not in prefixes of the graph are simply ignored.

Link to this function

delete_subjects(graph, subjects) View Source

Deletes all statements with the given subjects.

Link to this function

describes?(graph, subject) View Source

Checks if a RDF.Graph contains statements about the given resource.

Examples

  iex> RDF.Graph.new([{EX.S1, EX.p1, EX.O1}]) |> RDF.Graph.describes?(EX.S1)
  true
  iex> RDF.Graph.new([{EX.S1, EX.p1, EX.O1}]) |> RDF.Graph.describes?(EX.S2)
  false
Link to this function

description(graph, subject) View Source

The RDF.Description of the given subject.

All RDF.Descriptions within a RDF.Graph.

Checks if two RDF.Graphs are equal.

Two RDF.Graphs are considered to be equal if they contain the same triples and have the same name. The prefixes of the graph are irrelevant for equality.

Fetches the description of the given subject.

When the subject can not be found :error is returned.

Examples

iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |>
...>   RDF.Graph.fetch(EX.S1)
{:ok, RDF.Description.new({EX.S1, EX.P1, EX.O1})}
iex> RDF.Graph.fetch(RDF.Graph.new, EX.foo)
:error
Link to this function

get(graph, subject, default \\ nil) View Source

Gets the description of the given subject.

When the subject can not be found the optionally given default value or nil is returned.

Examples

iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |>
...>   RDF.Graph.get(EX.S1)
RDF.Description.new({EX.S1, EX.P1, EX.O1})
iex> RDF.Graph.get(RDF.Graph.new, EX.Foo)
nil
iex> RDF.Graph.get(RDF.Graph.new, EX.Foo, :bar)
:bar
Link to this function

get_and_update(graph, subject, fun) View Source

Gets and updates the description of the given subject, in a single pass.

Invokes the passed function on the RDF.Description of the given subject; this function should return either {description_to_return, new_description} or :pop.

If the passed function returns {description_to_return, new_description}, the return value of get_and_update is {description_to_return, new_graph} where new_graph is the input Graph updated with new_description for the given subject.

If the passed function returns :pop the description for the given subject is removed and a {removed_description, new_graph} tuple gets returned.

Examples

iex> RDF.Graph.new({EX.S, EX.P, EX.O}) |>
...>   RDF.Graph.get_and_update(EX.S, fn current_description ->
...>     {current_description, {EX.P, EX.NEW}}
...>   end)
{RDF.Description.new(EX.S, EX.P, EX.O), RDF.Graph.new(EX.S, EX.P, EX.NEW)}

Checks if the given statement exists within a RDF.Graph.

Creates an empty unnamed RDF.Graph.

Creates an RDF.Graph.

If a keyword list is given an empty graph is created. Otherwise an unnamed graph initialized with the given data is created.

See new/2 for available arguments and the different ways to provide data.

Examples

RDF.Graph.new({EX.S, EX.p, EX.O})

RDF.Graph.new(name: EX.GraphName)

Creates an RDF.Graph initialized with data.

The initial RDF triples can be provided

Available options:

  • name: the name of the graph to be created
  • prefixes: some prefix mappings which should be stored alongside the graph and will be used for example when serializing in a format with prefix support

Examples

RDF.Graph.new({EX.S, EX.p, EX.O})
RDF.Graph.new({EX.S, EX.p, EX.O}, name: EX.GraphName)
RDF.Graph.new({EX.S, EX.p, [EX.O1, EX.O2]})
RDF.Graph.new([{EX.S1, EX.p1, EX.O1}, {EX.S2, EX.p2, EX.O2}])
RDF.Graph.new(RDF.Description.new(EX.S, EX.P, EX.O))
RDF.Graph.new([graph, description, triple])
Link to this function

new(subject, predicate, objects, options \\ []) View Source

Creates an RDF.Graph with initial triples.

See new/2 for available arguments.

The set of all resources used in the objects within a RDF.Graph.

Note: This function does collect only IRIs and BlankNodes, not Literals.

Examples

iex> RDF.Graph.new([
...>   {EX.S1, EX.p1, EX.O1},
...>   {EX.S2, EX.p2, EX.O2},
...>   {EX.S3, EX.p1, EX.O2},
...>   {EX.S4, EX.p2, RDF.bnode(:bnode)},
...>   {EX.S5, EX.p3, "foo"}
...> ]) |> RDF.Graph.objects
MapSet.new([RDF.iri(EX.O1), RDF.iri(EX.O2), RDF.bnode(:bnode)])

Pops an arbitrary triple from a RDF.Graph.

Pops the description of the given subject.

When the subject can not be found the optionally given default value or nil is returned.

Examples

iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |>
...>   RDF.Graph.pop(EX.S1)
{RDF.Description.new({EX.S1, EX.P1, EX.O1}), RDF.Graph.new({EX.S2, EX.P2, EX.O2})}
iex> RDF.Graph.pop(RDF.Graph.new({EX.S, EX.P, EX.O}), EX.Missing)
{nil, RDF.Graph.new({EX.S, EX.P, EX.O})}

The set of all properties used in the predicates of the statements within a RDF.Graph.

Examples

iex> RDF.Graph.new([
...>   {EX.S1, EX.p1, EX.O1},
...>   {EX.S2, EX.p2, EX.O2},
...>   {EX.S1, EX.p2, EX.O3}]) |>
...>   RDF.Graph.predicates
MapSet.new([EX.p1, EX.p2])

Adds statements to a RDF.Graph and overwrites all existing statements with the same subjects and predicates.

When the statements to be added are given as another RDF.Graph, the prefixes of this graph will be added. In case of conflicting prefix mappings the original prefix from graph will be kept.

Examples

iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |>
...>   RDF.Graph.put([{EX.S1, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O3}])
RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S1, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O3}])
Link to this function

put(graph, subject, predications) View Source

Add statements to a RDF.Graph, overwriting all statements with the same subject and predicate.

Link to this function

put(graph, subject, predicate, objects) View Source

Add statements to a RDF.Graph, overwriting all statements with the same subject and predicate.

Examples

iex> RDF.Graph.new(EX.S, EX.P, EX.O1) |> RDF.Graph.put(EX.S, EX.P, EX.O2)
RDF.Graph.new(EX.S, EX.P, EX.O2)
iex> RDF.Graph.new(EX.S, EX.P1, EX.O1) |> RDF.Graph.put(EX.S, EX.P2, EX.O2)
RDF.Graph.new([{EX.S, EX.P1, EX.O1}, {EX.S, EX.P2, EX.O2}])

The set of all resources used within a RDF.Graph.

Examples

iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p1, EX.O2}, ...> {EX.S2, EX.p2, RDF.bnode(:bnode)}, ...> {EX.S3, EX.p1, "foo"} ...> ]) |> RDF.Graph.resources MapSet.new([RDF.iri(EX.S1), RDF.iri(EX.S2), RDF.iri(EX.S3),

RDF.iri(EX.O1), RDF.iri(EX.O2), RDF.bnode(:bnode), EX.p1, EX.p2])

See RDF.Graph.triples/1.

The number of subjects within a RDF.Graph.

Examples

iex> RDF.Graph.new([
...>   {EX.S1, EX.p1, EX.O1},
...>   {EX.S2, EX.p2, EX.O2},
...>   {EX.S1, EX.p2, EX.O3}]) |>
...>   RDF.Graph.subject_count
2

The set of all subjects used in the statements within a RDF.Graph.

Examples

iex> RDF.Graph.new([
...>   {EX.S1, EX.p1, EX.O1},
...>   {EX.S2, EX.p2, EX.O2},
...>   {EX.S1, EX.p2, EX.O3}]) |>
...>   RDF.Graph.subjects
MapSet.new([RDF.iri(EX.S1), RDF.iri(EX.S2)])

The number of statements within a RDF.Graph.

Examples

iex> RDF.Graph.new([
...>   {EX.S1, EX.p1, EX.O1},
...>   {EX.S2, EX.p2, EX.O2},
...>   {EX.S1, EX.p2, EX.O3}]) |>
...>   RDF.Graph.triple_count
3

The list of all statements within a RDF.Graph.

Examples

  iex> RDF.Graph.new([
  ...>   {EX.S1, EX.p1, EX.O1},
  ...>   {EX.S2, EX.p2, EX.O2},
  ...>   {EX.S1, EX.p2, EX.O3}
  ...> ]) |> RDF.Graph.triples
  [{RDF.iri(EX.S1), RDF.iri(EX.p1), RDF.iri(EX.O1)},
   {RDF.iri(EX.S1), RDF.iri(EX.p2), RDF.iri(EX.O3)},
   {RDF.iri(EX.S2), RDF.iri(EX.p2), RDF.iri(EX.O2)}]
Link to this function

values(graph, mapping \\ &RDF.Statement.default_term_mapping/1) View Source

Returns a nested map of the native Elixir values of a RDF.Graph.

The optional second argument allows to specify a custom mapping with a function which will receive a tuple {statement_position, rdf_term} where statement_position is one of the atoms :subject, :predicate or :object, while rdf_term is the RDF term to be mapped.

Examples

iex> [
...>   {~I<http://example.com/S1>, ~I<http://example.com/p>, ~L"Foo"},
...>   {~I<http://example.com/S2>, ~I<http://example.com/p>, RDF.integer(42)}
...> ]
...> |> RDF.Graph.new()
...> |> RDF.Graph.values()
%{
  "http://example.com/S1" => %{"http://example.com/p" => ["Foo"]},
  "http://example.com/S2" => %{"http://example.com/p" => [42]}
}

iex> [
...>   {~I<http://example.com/S1>, ~I<http://example.com/p>, ~L"Foo"},
...>   {~I<http://example.com/S2>, ~I<http://example.com/p>, RDF.integer(42)}
...> ]
...> |> RDF.Graph.new()
...> |> RDF.Graph.values(fn
...>      {:predicate, predicate} ->
...>        predicate
...>        |> to_string()
...>        |> String.split("/")
...>        |> List.last()
...>        |> String.to_atom()
...>    {_, term} ->
...>      RDF.Term.value(term)
...>    end)
%{
  "http://example.com/S1" => %{p: ["Foo"]},
  "http://example.com/S2" => %{p: [42]}
}