View Source TFLiteElixir.Interpreter (tflite_elixir v0.3.7)

An interpreter for a graph of nodes that input and output from tensors.

Summary

Functions

Allocate memory for tensors in the graph

Return the execution plan of the model.

Get the name of the input tensor

Get the name of the output tensor

Get SignatureDef map from the Metadata of a TfLite flatbuffer buffer.

Fill data to the specified input tensor

Get the list of input tensors.

Raising version of inputs/1.

Run forwarding

Raising version of invoke/1.

New interpreter

New interpreter with model filepath

Raising version of new/0.

Raising version of new/1.

New interpreter with model buffer

Return the number of ops in the model.

Get the data of the output tensor

Get the list of output tensors.

Raising version of outputs/1.

Fill input data to corresponding input tensor of the interpreter, call Interpreter.invoke and return output tensor(s)

Provide a list of tensor indexes that are inputs to the model. Each index is bound check and this modifies the consistent_ flag of the interpreter.

Set the number of threads available to the interpreter.

Provide a list of tensor indexes that are outputs to the model. Each index is bound check and this modifies the consistent_ flag of the interpreter.

Provide a list of tensor indexes that are variable tensors. Each index is bound check and this modifies the consistent_ flag of the interpreter.

Returns list of all keys of different method signatures defined in the model.

Get any tensor in the graph by its id

Return the number of tensors in the model.

Get the list of variable tensors.

Types

@type nif_error() :: {:error, String.t()}
@type nif_resource_ok() :: {:ok, reference()}
@type tensor_type() ::
  :no_type
  | {:f, 32}
  | {:s, 32}
  | {:u, 8}
  | {:s, 64}
  | :string
  | :bool
  | {:s, 16}
  | {:c, 64}
  | {:s, 8}
  | {:f, 16}
  | {:f, 64}
  | {:c, 128}
  | {:u, 64}
  | :resource
  | :variant
  | {:u, 32}

Functions

@spec allocate_tensors(reference()) :: :ok | nif_error()

Allocate memory for tensors in the graph

Raising version of allocate_tensors/1.

@spec execution_plan(reference()) :: [non_neg_integer()] | nif_error()

Return the execution plan of the model.

Experimental interface, subject to change.

Link to this function

get_input_name(self, index)

View Source
@spec get_input_name(reference(), non_neg_integer()) ::
  {:ok, String.t()} | nif_error()

Get the name of the input tensor

Note that the index here means the index in the result list of inputs/1. For example, if inputs/1 returns [42, 314], then 0 should be passed here to get the name of tensor 42

Link to this function

get_input_name!(self, index)

View Source

Raising version of get_input_name/2.

Link to this function

get_output_name(self, index)

View Source
@spec get_output_name(reference(), non_neg_integer()) ::
  {:ok, String.t()} | nif_error()

Get the name of the output tensor

Note that the index here means the index in the result list of outputs/1. For example, if outputs/1 returns [42, 314], then 0 should be passed here to get the name of tensor 42

Link to this function

get_output_name!(self, index)

View Source

Raising version of get_output_name/2.

Link to this function

get_signature_defs(self)

View Source
@spec get_signature_defs(reference()) :: {:ok, map()} | nil | {:error, String.t()}

Get SignatureDef map from the Metadata of a TfLite flatbuffer buffer.

self: TFLiteElixir.Interpreter

TFLite model buffer to get the signature_def.

Returns:

Map containing serving names to SignatureDefs if exists, otherwise, nil.

Link to this function

get_signature_defs!(self)

View Source

Raising version of get_signature_defs/1.

Link to this function

input_tensor(self, index, data)

View Source
@spec input_tensor(reference(), non_neg_integer(), binary()) :: :ok | nif_error()

Fill data to the specified input tensor

Note: although we have typed_input_tensor available in C++, here what we really passed to the NIF is binary data, therefore, I'm not pretend that we have type information.

Link to this function

input_tensor!(self, index, data)

View Source

Raising version of input_tensor/3.

@spec inputs(reference()) :: {:ok, [non_neg_integer()]} | nif_error()

Get the list of input tensors.

return a list of input tensor id

Raising version of inputs/1.

@spec invoke(reference()) :: :ok | nif_error()

Run forwarding

Raising version of invoke/1.

@spec new() :: nif_resource_ok() | nif_error()

New interpreter

@spec new(String.t()) :: nif_resource_ok() | nif_error()

New interpreter with model filepath

Raising version of new/0.

Raising version of new/1.

Link to this function

new_from_buffer(model_buffer)

View Source
@spec new_from_buffer(binary()) :: nif_resource_ok() | nif_error()

New interpreter with model buffer

@spec nodes_size(reference()) :: non_neg_integer() | nif_error()

Return the number of ops in the model.

Link to this function

output_tensor(self, index)

View Source
@spec output_tensor(reference(), non_neg_integer()) :: {:ok, binary()} | nif_error()

Get the data of the output tensor

Note that the index here means the index in the result list of outputs/1. For example, if outputs/1 returns [42, 314], then 0 should be passed here to get the name of tensor 42

Link to this function

output_tensor!(self, index)

View Source

Raising version of output_tensor/2.

@spec outputs(reference()) :: {:ok, [non_neg_integer()]} | nif_error()

Get the list of output tensors.

return a list of output tensor id

Raising version of outputs/1.

Link to this function

predict(interpreter, input)

View Source
@spec predict(reference(), binary() | [binary()] | map()) ::
  binary() | [binary()] | map() | nif_error()

Fill input data to corresponding input tensor of the interpreter, call Interpreter.invoke and return output tensor(s)

Link to this function

set_inputs(self, inputs)

View Source
@spec set_inputs(reference(), [integer()]) :: :ok | nif_error()

Provide a list of tensor indexes that are inputs to the model. Each index is bound check and this modifies the consistent_ flag of the interpreter.

Link to this function

set_num_threads(self, num_threads)

View Source
@spec set_num_threads(reference(), integer()) :: :ok | nif_error()

Set the number of threads available to the interpreter.

NOTE: num_threads should be >= 1.

As TfLite interpreter could internally apply a TfLite delegate by default (i.e. XNNPACK), the number of threads that are available to the default delegate should be set via InterpreterBuilder APIs as follows:

interpreter = Interpreter.new!()
builder = InterpreterBuilder.new!(tflite model, op resolver)
InterpreterBuilder.set_num_threads(builder, ...)
assert :ok == InterpreterBuilder.build!(builder, interpreter)
Link to this function

set_num_threads!(self, num_threads)

View Source

Raising version of set_num_threads/2.

Link to this function

set_outputs(self, outputs)

View Source
@spec set_outputs(reference(), [integer()]) :: :ok | nif_error()

Provide a list of tensor indexes that are outputs to the model. Each index is bound check and this modifies the consistent_ flag of the interpreter.

Link to this function

set_variables(self, variables)

View Source
@spec set_variables(reference(), [integer()]) :: :ok | nif_error()

Provide a list of tensor indexes that are variable tensors. Each index is bound check and this modifies the consistent_ flag of the interpreter.

@spec signature_keys(reference()) :: [String.t()] | nif_error()

Returns list of all keys of different method signatures defined in the model.

WARNING: Experimental interface, subject to change

Link to this function

tensor(self, tensor_index)

View Source
@spec tensor(reference(), non_neg_integer()) ::
  %TFLiteElixir.TFLiteTensor{
    index: term(),
    name: term(),
    quantization_params: term(),
    reference: term(),
    shape: term(),
    shape_signature: term(),
    sparsity_params: term(),
    type: term()
  }
  | nif_error()

Get any tensor in the graph by its id

Note that the tensor_index here means the id of a tensor. For example, if inputs/1 returns [42, 314], then 42 should be passed here to get tensor 42.

@spec tensors_size(reference()) :: non_neg_integer() | nif_error()

Return the number of tensors in the model.

@spec variables(reference()) :: {:ok, [non_neg_integer()]} | nif_error()

Get the list of variable tensors.