View Source AWS.GameLift (aws-elixir v1.0.4)
Amazon GameLift provides solutions for hosting session-based multiplayer game servers in the cloud, including tools for deploying, operating, and scaling game servers.
Built on Amazon Web Services global computing infrastructure, GameLift helps you deliver high-performance, high-reliability, low-cost game servers while dynamically scaling your resource usage to meet player demand.
about-amazon-gamelift-solutions
About Amazon GameLift solutions
Get more information on these Amazon GameLift solutions in the Amazon GameLift Developer Guide.
* Amazon GameLift managed hosting -- Amazon GameLift offers a fully managed service to set up and maintain computing machines for hosting, manage game session and player session life cycle, and handle security, storage, and performance tracking. You can use automatic scaling tools to balance player demand and hosting costs, configure your game session management to minimize player latency, and add FlexMatch for matchmaking.
* Managed hosting with Realtime Servers -- With Amazon GameLift Realtime Servers, you can quickly configure and set up ready-to-go game servers for your game. Realtime Servers provides a game server framework with core Amazon GameLift infrastructure already built in. Then use the full range of Amazon GameLift managed hosting features, including FlexMatch, for your game.
* Amazon GameLift FleetIQ -- Use Amazon GameLift FleetIQ as a standalone service while hosting your games using EC2 instances and Auto Scaling groups. Amazon GameLift FleetIQ provides optimizations for game hosting, including boosting the viability of low-cost Spot Instances gaming. For a complete solution, pair the Amazon GameLift FleetIQ and FlexMatch standalone services.
* Amazon GameLift FlexMatch -- Add matchmaking to your game hosting solution. FlexMatch is a customizable matchmaking service for multiplayer games. Use FlexMatch as integrated with Amazon GameLift managed hosting or incorporate FlexMatch as a standalone service into your own hosting solution.
about-this-api-reference
About this API Reference
This reference guide describes the low-level service API for Amazon GameLift. With each topic in this guide, you can find links to language-specific SDK guides and the Amazon Web Services CLI reference. Useful links:
*
Amazon GameLift API operations listed by tasks
*
Link to this section Summary
Functions
Registers a player's acceptance or rejection of a proposed FlexMatch match.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Creates an alias for a fleet.
Creates an Amazon GameLift build resource for your game server software and stores the software for deployment to hosting resources.
Creates a managed fleet of Amazon Elastic Compute Cloud (Amazon EC2) instances to host your containerized game servers.
Creates a ContainerGroupDefinition
that describes a set of containers for
hosting your game server with Amazon GameLift managed containers hosting.
Creates a fleet of compute resources to host your game servers.
Adds remote locations to a managed EC2 fleet or managed container fleet and begins populating the new locations with instances.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Creates a multiplayer game session for players in a specific fleet location.
Creates a placement queue that processes requests for new game sessions.
Creates a custom location for use in an Anywhere fleet.
Defines a new matchmaking configuration for use with FlexMatch.
Creates a new rule set for FlexMatch matchmaking.
Reserves an open player slot in a game session for a player.
Reserves open slots in a game session for a group of players.
Creates a script resource for your Realtime Servers script.
Requests authorization to create or delete a peer connection between the VPC for your Amazon GameLift fleet and a virtual private cloud (VPC) in your Amazon Web Services account.
Establishes a VPC peering connection between a virtual private cloud (VPC) in an Amazon Web Services account with the VPC for your Amazon GameLift fleet.
Deletes an alias.
Deletes a build.
Deletes all resources and information related to a container fleet and shuts down currently running fleet instances, including those in remote locations.
Deletes a container group definition.
Deletes all resources and information related to a fleet and shuts down any currently running fleet instances, including those in remote locations.
Removes locations from a multi-location fleet.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Deletes a game session queue.
Deletes a custom location.
Permanently removes a FlexMatch matchmaking configuration.
Deletes an existing matchmaking rule set.
Deletes a fleet scaling policy.
Deletes a Realtime script.
Cancels a pending VPC peering authorization for the specified VPC.
Removes a VPC peering connection.
Removes a compute resource from an Amazon GameLift Anywhere fleet.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Retrieves properties for an alias.
Retrieves properties for a custom game build.
Retrieves properties for a compute resource in an Amazon GameLift fleet.
Retrieves the properties for a container fleet.
Retrieves the properties of a container group definition, including all container definitions in the group.
Retrieves the instance limits and current utilization for an Amazon Web Services Region or location.
Retrieves core fleet-wide properties for fleets in an Amazon Web Services Region.
Retrieves the resource capacity settings for one or more fleets.
Retrieves information about a managed container fleet deployment.
Retrieves entries from a fleet's event log.
Retrieves information on a fleet's remote locations, including life-cycle status and any suspended fleet activity.
Retrieves the resource capacity settings for a fleet location.
Retrieves current usage data for a fleet location.
Retrieves a fleet's inbound connection permissions.
Retrieves utilization statistics for one or more fleets.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Retrieves additional game session properties, including the game session protection policy in force, a set of one or more game sessions in a specific fleet location.
Retrieves information, including current status, about a game session placement request.
Retrieves the properties for one or more game session queues.
Retrieves a set of one or more game sessions in a specific fleet location.
Retrieves information about the EC2 instances in an Amazon GameLift managed fleet, including instance ID, connection data, and status.
Retrieves one or more matchmaking tickets.
Retrieves the details of FlexMatch matchmaking configurations.
Retrieves the details for FlexMatch matchmaking rule sets.
Retrieves properties for one or more player sessions.
Retrieves a fleet's runtime configuration settings.
Retrieves all scaling policies applied to a fleet.
Retrieves properties for a Realtime script.
Retrieves valid VPC peering authorizations that are pending for the Amazon Web Services account.
Retrieves information on VPC peering connections.
Requests authorization to remotely connect to a hosting resource in a Amazon GameLift managed fleet.
Requests an authentication token from Amazon GameLift for a compute resource in an Amazon GameLift fleet.
Retrieves the location of stored game session logs for a specified game session on Amazon GameLift managed fleets.
Requests authorization to remotely connect to an instance in an Amazon GameLift managed fleet.
Retrieves all aliases for this Amazon Web Services account.
Retrieves build resources for all builds associated with the Amazon Web Services account in use.
Retrieves information on the compute resources in an Amazon GameLift fleet.
Retrieves a collection of container fleet resources in an Amazon Web Services Region.
Retrieves all versions of a container group definition.
Retrieves container group definitions for the Amazon Web Services account and Amazon Web Services Region.
Retrieves a collection of container fleet deployments in an Amazon Web Services Region.
Retrieves a collection of fleet resources in an Amazon Web Services Region.
Lists a game server groups.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Lists all custom and Amazon Web Services locations.
Retrieves script records for all Realtime scripts that are associated with the Amazon Web Services account in use.
Retrieves all tags assigned to a Amazon GameLift resource.
Creates or updates a scaling policy for a fleet.
Registers a compute resource in an Amazon GameLift Anywhere fleet.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Retrieves a fresh set of credentials for use when uploading a new set of game build files to Amazon GameLift's Amazon S3.
Attempts to retrieve a fleet ID that is associated with an alias.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Retrieves all active game sessions that match a set of search criteria and sorts them into a specified order.
Resumes certain types of activity on fleet instances that were suspended with StopFleetActions. For multi-location fleets, fleet actions are managed separately for each location. Currently, this operation is used to restart a fleet's auto-scaling activity.
Places a request for a new game session in a queue.
Finds new players to fill open slots in currently running game sessions.
Uses FlexMatch to create a game match for a group of players based on custom matchmaking rules.
Suspends certain types of activity in a fleet location.
Cancels a game session placement that is in PENDING
status.
Cancels a matchmaking ticket or match backfill ticket that is currently being processed.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Assigns a tag to an Amazon GameLift resource.
Removes a tag assigned to a Amazon GameLift resource.
Updates properties for an alias.
Updates metadata in a build resource, including the build name and version.
Updates the properties of a managed container fleet.
Updates properties in an existing container group definition.
Updates a fleet's mutable attributes, such as game session protection and resource creation limits.
Updates capacity settings for a managed EC2 fleet or managed container fleet.
Updates permissions that allow inbound traffic to connect to game sessions in the fleet.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Updates the mutable properties of a game session.
Updates the configuration of a game session queue, which determines how the queue processes new game session requests.
Updates settings for a FlexMatch matchmaking configuration.
Updates the runtime configuration for the specified fleet.
Updates Realtime script metadata and content.
Validates the syntax of a matchmaking rule or rule set.
Link to this section Functions
Registers a player's acceptance or rejection of a proposed FlexMatch match.
A matchmaking configuration may require player acceptance; if so, then matches built with that configuration cannot be completed unless all players accept the proposed match within a specified time limit.
When FlexMatch builds a match, all the matchmaking tickets involved in the
proposed
match are placed into status REQUIRES_ACCEPTANCE
. This is a trigger for
your game to get acceptance from all players in each ticket. Calls to this
action are only valid
for tickets that are in this status; calls for tickets not in this status result
in an
error.
To register acceptance, specify the ticket ID, one or more players, and an
acceptance response.
When all players have accepted, Amazon GameLift advances the matchmaking tickets
to status
PLACING
, and attempts to create a new game session for the match.
If any player rejects the match, or if acceptances are not received before a specified timeout, the proposed match is dropped. Each matchmaking ticket in the failed match is handled as follows:
*
If the ticket has one or more players who rejected the match or failed to
respond, the ticket status is set CANCELLED
and processing is
terminated.
*
If all players in the ticket accepted the match, the ticket
status is returned to SEARCHING
to find a new match.
learn-more
Learn more
Add FlexMatch to a game client
FlexMatch events (reference)
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Locates an available game server and temporarily reserves it to host gameplay and players.
This operation is called from a
game client or client service (such as a matchmaker) to request hosting
resources for a
new game session. In response, Amazon GameLift FleetIQ locates an available game
server, places it in
CLAIMED
status for 60 seconds, and returns connection information that
players can use to connect to the game server.
To claim a game server, identify a game server group. You can also specify a
game
server ID, although this approach bypasses Amazon GameLift FleetIQ placement
optimization. Optionally,
include game data to pass to the game server at the start of a game session,
such as a
game map or player information. Add filter options to further restrict how a
game server is chosen, such as only allowing game servers on ACTIVE
instances
to be claimed.
When a game server is successfully claimed, connection information is returned.
A
claimed game server's utilization status remains AVAILABLE
while the claim
status is set to CLAIMED
for up to 60 seconds. This time period gives the
game server time to update its status to UTILIZED
after players join. If
the game server's status is not updated within 60 seconds, the game server
reverts to
unclaimed status and is available to be claimed by another request. The claim
time
period is a fixed value and is not configurable.
If you try to claim a specific game server, this request will fail in the following cases:
*
If the game server utilization status is UTILIZED
.
*
If the game server claim status is CLAIMED
.
*
If the game server is running on an instance in DRAINING
status and
the provided filter option does not allow placing on DRAINING
instances.
learn-more
Learn more
Creates an alias for a fleet.
In most situations, you can use an alias ID in place of a fleet ID. An alias provides a level of abstraction for a fleet that is useful when redirecting player traffic from one fleet to another, such as when updating your game build.
Amazon GameLift supports two types of routing strategies for aliases: simple and terminal. A simple alias points to an active fleet. A terminal alias is used to display messaging or link to a URL instead of routing players to an active fleet. For example, you might use a terminal alias when a game version is no longer supported and you want to direct players to an upgrade site.
To create a fleet alias, specify an alias name, routing strategy, and optional
description. Each simple alias can point to only one fleet, but a fleet can have
multiple aliases. If successful, a new alias record is returned, including an
alias ID
and an ARN. You can reassign an alias to another fleet by calling
UpdateAlias
.
related-actions
Related actions
Creates an Amazon GameLift build resource for your game server software and stores the software for deployment to hosting resources.
Combine game server binaries and dependencies into a single .zip file
Use the CLI command upload-build to quickly and simply create a new build and upload your game build .zip file to Amazon GameLift Amazon S3. This helper command eliminates the need to explicitly manage access permissions.
Alternatively, use the CreateBuild
action for the following
scenarios:
*
You want to create a build and upload a game build zip file from in an Amazon S3
location that you control. In this scenario, you need to give Amazon GameLift
permission
to access to the Amazon S3 bucket. With permission in place, call
CreateBuild
and specify a build name, the build's runtime
operating system, and the Amazon S3 storage location where the build file is
stored.
You want to create a build and upload a local game build zip file to an Amazon
S3
location that's controlled by Amazon GameLift. (See the upload-build
CLI
command for this scenario.) In this scenario, you need to request temporary
access credentials to the Amazon GameLift Amazon S3 location. Specify a build
name and the
build's runtime operating system. The response provides an Amazon S3 location
and a
set of temporary access credentials. Use the credentials to upload your build
files to the specified Amazon S3 location (see Uploading
Objects
in
the Amazon S3 Developer Guide*). You can't update build files
after uploading them to Amazon GameLift Amazon S3.
If successful, this action creates a new build resource with a unique build ID
and
places it in INITIALIZED
status. When the build reaches READY
status, you can create fleets with it.
learn-more
Learn more
Creates a managed fleet of Amazon Elastic Compute Cloud (Amazon EC2) instances to host your containerized game servers.
Use this operation to define how to deploy a container architecture onto each fleet instance and configure fleet settings. You can create a container fleet in any Amazon Web Services Regions that Amazon GameLift supports for multi-location fleets. A container fleet can be deployed to a single location or multiple locations. Container fleets are deployed with Amazon Linux 2023 as the instance operating system.
Define the fleet's container architecture using container group definitions. Each fleet can have one of the following container group types:
* The game server container group runs your game server build and dependent software. Amazon GameLift deploys one or more replicas of this container group to each fleet instance. The number of replicas depends on the computing capabilities of the fleet instance in use.
* An optional per-instance container group might be used to run other software that only needs to run once per instance, such as background services, logging, or test processes. One per-instance container group is deployed to each fleet instance.
Each container group can include the definition for one or more containers. A container definition specifies a container image that is stored in an Amazon Elastic Container Registry (Amazon ECR) public or private repository.
request-options
Request options
Use this operation to make the following types of requests. Most fleet settings have default values, so you can create a working fleet with a minimal configuration and default values, which you can customize later.
* Create a fleet with no container groups. You can configure a container fleet and then add container group definitions later. In this scenario, no fleet instances are deployed, and the fleet can't host game sessions until you add a game server container group definition. Provide the following required parameter values:
*
FleetRoleArn
* Create a fleet with a game server container group. Provide the following required parameter values:
*
FleetRoleArn
*
GameServerContainerGroupDefinitionName
* Create a fleet with a game server container group and a per-instance container group. Provide the following required parameter values:
*
FleetRoleArn
*
GameServerContainerGroupDefinitionName
*
PerInstanceContainerGroupDefinitionName
results
Results
If successful, this operation creates a new container fleet resource, places it
in
PENDING
status, and initiates the fleet creation workflow.
For fleets with container groups, this workflow
starts a fleet deployment and transitions the status to ACTIVE
. Fleets
without a container group are placed in CREATED
status.
You can update most of the properties of a fleet, including container group definitions, and deploy the update across all fleet instances. Use a fleet update to deploy a new game server version update across the container fleet.
Creates a ContainerGroupDefinition
that describes a set of containers for
hosting your game server with Amazon GameLift managed containers hosting.
An Amazon GameLift container group
is similar to a container task or pod. Use container group definitions when you
create a
container fleet with CreateContainerFleet
.
A container group definition determines how Amazon GameLift deploys your containers to each instance in a container fleet. You can maintain multiple versions of a container group definition.
There are two types of container groups:
A *game server container group has the containers that run your game server application and supporting software. A game server container group can have these container types:
*
Game server container. This container runs your game server. You can define one game server container in a game server container group.
*
Support container. This container runs software in parallel with your game server. You can define up to 8 support containers in a game server group.
When building a game server container group definition, you can choose to bundle your game server executable and all dependent software into a single game server container. Alternatively, you can separate the software into one game server container and one or more support containers.
On a container fleet instance, a game server container group can be deployed multiple times (depending on the compute resources of the instance). This means that all containers in the container group are replicated together.
A *per-instance container group has containers for processes that aren't replicated on a container fleet instance. This might include background services, logging, test processes, or processes that need to persist independently of the game server container group. When building a per-instance container group, you can define up to 10 support containers.
This operation requires Identity and Access Management (IAM) permissions to access container images in Amazon ECR repositories. See IAM permissions for Amazon GameLift for help setting the appropriate permissions.
request-options
Request options
Use this operation to make the following types of requests. You can specify values for the minimum required parameters and customize optional values later.
* Create a game server container group definition. Provide the following required parameter values:
*
Name
*
ContainerGroupType
(GAME_SERVER
)
*
OperatingSystem
(omit to use default value)
*
TotalMemoryLimitMebibytes
(omit to use default value)
*
TotalVcpuLimit
(omit to use default value)
*
At least one GameServerContainerDefinition
*
ContainerName
*
ImageUrl
*
PortConfiguration
*
ServerSdkVersion
(omit to use default value)
* Create a per-instance container group definition. Provide the following required parameter values:
*
Name
*
ContainerGroupType
(PER_INSTANCE
)
*
OperatingSystem
(omit to use default value)
*
TotalMemoryLimitMebibytes
(omit to use default value)
*
TotalVcpuLimit
(omit to use default value)
*
At least one SupportContainerDefinition
*
ContainerName
*
ImageUrl
results
Results
If successful, this request creates a ContainerGroupDefinition
resource and
assigns a unique ARN value. You can update most properties of a container group
definition by
calling UpdateContainerGroupDefinition
, and optionally save the update as a
new version.
Creates a fleet of compute resources to host your game servers.
Use this operation to set up the following types of fleets based on compute type:
managed-ec2-fleet
Managed EC2 fleet
An EC2 fleet is a set of Amazon Elastic Compute Cloud (Amazon EC2) instances.
Your game server build is
deployed to each fleet instance. Amazon GameLift manages the fleet's instances
and controls the
lifecycle of game server processes, which host game sessions for players. EC2
fleets can
have instances in multiple locations. Each instance in the fleet is designated a
Compute
.
To create an EC2 fleet, provide these required parameters:
*
Either BuildId
or ScriptId
*
ComputeType
set to EC2
(the default value)
*
EC2InboundPermissions
*
EC2InstanceType
*
FleetType
*
Name
*
RuntimeConfiguration
with at least one ServerProcesses
configuration
If successful, this operation creates a new fleet resource and places it in
NEW
status while Amazon GameLift initiates the fleet creation workflow.
To debug your fleet, fetch logs, view performance
metrics or other actions on the fleet, create a development fleet with port
22/3389
open. As a best practice, we recommend opening ports for remote access only when
you
need them and closing them when you're finished.
When the fleet status is ACTIVE, you can adjust capacity settings and turn autoscaling on/off for each location.
anywhere-fleet
Anywhere fleet
An Anywhere fleet represents compute resources that are not owned or managed by Amazon GameLift. You might create an Anywhere fleet with your local machine for testing, or use one to host game servers with on-premises hardware or other game hosting solutions.
To create an Anywhere fleet, provide these required parameters:
*
ComputeType
set to ANYWHERE
*
Locations
specifying a custom location
*
Name
If successful, this operation creates a new fleet resource and places it in
ACTIVE
status. You can register computes with a fleet in
ACTIVE
status.
learn-more
Learn more
Adds remote locations to a managed EC2 fleet or managed container fleet and begins populating the new locations with instances.
The new instances conform to the fleet's instance type, auto-scaling, and other configuration settings.
You can't add remote locations to a fleet that resides in an Amazon Web Services Region that doesn't support multiple locations. Fleets created prior to March 2021 can't support multiple locations.
To add fleet locations, specify the fleet to be updated and provide a list of one or more locations.
If successful, this operation returns the list of added locations with their
status
set to NEW
. Amazon GameLift initiates the process of starting an instance in
each
added location. You can track the status of each new location by monitoring
location
creation events using
DescribeFleetEvents.
learn-more
Learn more
Amazon GameLift service locations for managed hosting.
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Creates a Amazon GameLift FleetIQ game server group for managing game hosting on a collection of Amazon Elastic Compute Cloud instances for game hosting.
This operation creates the game server group, creates an Auto Scaling group in your Amazon Web Services account, and establishes a link between the two groups. You can view the status of your game server groups in the Amazon GameLift console. Game server group metrics and events are emitted to Amazon CloudWatch.
Before creating a new game server group, you must have the following:
An Amazon Elastic Compute Cloud launch template that specifies how to launch Amazon Elastic Compute Cloud instances with your game server build. For more information, see Launching an Instance from a Launch Template in the Amazon Elastic Compute Cloud User Guide*.
An IAM role that extends limited access to your Amazon Web Services account to allow Amazon GameLift FleetIQ to create and interact with the Auto Scaling group. For more information, see Create IAM roles for cross-service interaction in the Amazon GameLift FleetIQ Developer Guide*.
To create a new game server group, specify a unique group name, IAM role and Amazon Elastic Compute Cloud launch template, and provide a list of instance types that can be used in the group. You must also set initial maximum and minimum limits on the group's instance count. You can optionally set an Auto Scaling policy with target tracking based on a Amazon GameLift FleetIQ metric.
Once the game server group and corresponding Auto Scaling group are created, you have full access to change the Auto Scaling group's configuration as needed. Several properties that are set when creating a game server group, including maximum/minimum size and auto-scaling policy settings, must be updated directly in the Auto Scaling group. Keep in mind that some Auto Scaling group properties are periodically updated by Amazon GameLift FleetIQ as part of its balancing activities to optimize for availability and cost.
learn-more
Learn more
Creates a multiplayer game session for players in a specific fleet location.
This operation prompts an available server process to start a game session and retrieves connection information for the new game session. As an alternative, consider using the Amazon GameLift game session placement feature with StartGameSessionPlacement , which uses the FleetIQ algorithm and queues to optimize the placement process.
When creating a game session, you specify exactly where you want to place it and
provide a set of game session configuration settings. The target fleet must be
in
ACTIVE
status.
You can use this operation in the following ways:
* To create a game session on an instance in a fleet's home Region, provide a fleet or alias ID along with your game session configuration.
* To create a game session on an instance in a fleet's remote location, provide a fleet or alias ID and a location name, along with your game session configuration.
* To create a game session on an instance in an Anywhere fleet, specify the fleet's custom location.
If successful, Amazon GameLift initiates a workflow to start a new game session
and returns a
GameSession
object containing the game session configuration and
status. When the game session status is ACTIVE
, it is updated with
connection information and you can create player sessions for the game session.
By
default, newly created game sessions are open to new players. You can restrict
new
player access by using
UpdateGameSession
to change the game session's player session creation
policy.
Amazon GameLift retains logs for active for 14 days. To access the logs, call GetGameSessionLogUrl to download the log files.
Available in Amazon GameLift Local.
learn-more
Learn more
Creates a placement queue that processes requests for new game sessions.
A queue uses FleetIQ algorithms to determine the best placement locations and find an available game server there, then prompts the game server process to start a new game session.
A game session queue is configured with a set of destinations (Amazon GameLift fleets or aliases), which determine the locations where the queue can place new game sessions. These destinations can span multiple fleet types (Spot and On-Demand), instance types, and Amazon Web Services Regions. If the queue includes multi-location fleets, the queue is able to place game sessions in all of a fleet's remote locations. You can opt to filter out individual locations if needed.
The queue configuration also determines how FleetIQ selects the best available placement for a new game session. Before searching for an available game server, FleetIQ first prioritizes the queue's destinations and locations, with the best placement locations on top. You can set up the queue to use the FleetIQ default prioritization or provide an alternate set of priorities.
To create a new queue, provide a name, timeout value, and a list of destinations. Optionally, specify a sort configuration and/or a filter, and define a set of latency cap policies. You can also include the ARN for an Amazon Simple Notification Service (SNS) topic to receive notifications of game session placement activity. Notifications using SNS or CloudWatch events is the preferred way to track placement activity.
If successful, a new GameSessionQueue
object is returned with an assigned
queue ARN. New game session requests, which are submitted to queue with
StartGameSessionPlacement or
StartMatchmaking,
reference a queue's name or ARN.
learn-more
Learn more
related-actions
Related actions
CreateGameSessionQueue | DescribeGameSessionQueues
Creates a custom location for use in an Anywhere fleet.
Defines a new matchmaking configuration for use with FlexMatch.
Whether your are using FlexMatch with Amazon GameLift hosting or as a standalone matchmaking service, the matchmaking configuration sets out rules for matching players and forming teams. If you're also using Amazon GameLift hosting, it defines how to start game sessions for each match. Your matchmaking system can use multiple configurations to handle different game scenarios. All matchmaking requests identify the matchmaking configuration to use and provide player attributes consistent with that configuration.
To create a matchmaking configuration, you must provide the following: configuration name and FlexMatch mode (with or without Amazon GameLift hosting); a rule set that specifies how to evaluate players and find acceptable matches; whether player acceptance is required; and the maximum time allowed for a matchmaking attempt. When using FlexMatch with Amazon GameLift hosting, you also need to identify the game session queue to use when starting a game session for the match.
In addition, you must set up an Amazon Simple Notification Service topic to receive matchmaking notifications. Provide the topic ARN in the matchmaking configuration.
learn-more
Learn more
Creates a new rule set for FlexMatch matchmaking.
A rule set describes the type of match to create, such as the number and size of teams. It also sets the parameters for acceptable player matches, such as minimum skill level or character type.
To create a matchmaking rule set, provide unique rule set name and the rule set body in JSON format. Rule sets must be defined in the same Region as the matchmaking configuration they are used with.
Since matchmaking rule sets cannot be edited, it is a good idea to check the rule set syntax using ValidateMatchmakingRuleSet before creating a new rule set.
learn-more
Learn more
*
*
*
Reserves an open player slot in a game session for a player.
New player sessions can
be created in any game session with an open slot that is in ACTIVE
status
and has a player creation policy of ACCEPT_ALL
. You can add a group of
players to a game session with
CreatePlayerSessions .
To create a player session, specify a game session ID, player ID, and optionally a set of player data.
If successful, a slot is reserved in the game session for the player and a new
PlayerSessions
object is returned with a player session ID. The player
references the player session ID when sending a connection request to the game
session,
and the game server can use it to validate the player reservation with the
Amazon GameLift
service. Player sessions cannot be updated.
The maximum number of players per game session is 200. It is not adjustable.
related-actions
Related actions
Reserves open slots in a game session for a group of players.
New player sessions can
be created in any game session with an open slot that is in ACTIVE
status
and has a player creation policy of ACCEPT_ALL
. To add a single player to a
game session, use
CreatePlayerSession
To create player sessions, specify a game session ID and a list of player IDs.
Optionally, provide a set of player data for each player ID.
If successful, a slot is reserved in the game session for each player, and new
PlayerSession
objects are returned with player session IDs. Each player
references their player session ID when sending a connection request to the game
session, and the game server can use it to validate the player reservation with
the
Amazon GameLift service. Player sessions cannot be updated.
The maximum number of players per game session is 200. It is not adjustable.
related-actions
Related actions
Creates a script resource for your Realtime Servers script.
Realtime scripts are JavaScript files that provide configuration settings and optional custom game logic for your game. Script logic is executed during an active game session. To deploy Realtime Servers for hosting, create an Amazon GameLift managed fleet with the script.
To create a script resource, specify a script name and provide the script file(s). The script files and all dependencies must be combined into a single .zip file. You can upload the .zip file from either of these locations:
A locally available directory. Use the ZipFile* parameter for this option.
An Amazon Simple Storage Service (Amazon S3) bucket under your Amazon Web Services account. Use the StorageLocation* parameter for this option. You'll need to have an Identity Access Management (IAM) role that allows the Amazon GameLift service to access your S3 bucket.
If the call is successful, Amazon GameLift creates a new script resource with a unique script ID. The script is uploaded to an Amazon S3 bucket that is owned by Amazon GameLift.
learn-more
Learn more
Amazon GameLift Realtime Servers
Set Up a Role for Amazon GameLift Access
related-actions
Related actions
Requests authorization to create or delete a peer connection between the VPC for your Amazon GameLift fleet and a virtual private cloud (VPC) in your Amazon Web Services account.
VPC peering enables the game servers on your fleet to communicate directly with other Amazon Web Services resources. After you've received authorization, use CreateVpcPeeringConnection to establish the peering connection. For more information, see VPC Peering with Amazon GameLift Fleets.
You can peer with VPCs that are owned by any Amazon Web Services account you have access to, including the account that you use to manage your Amazon GameLift fleets. You cannot peer with VPCs that are in different Regions.
To request authorization to create a connection, call this operation from the Amazon Web Services account with the VPC that you want to peer to your Amazon GameLift fleet. For example, to enable your game servers to retrieve data from a DynamoDB table, use the account that manages that DynamoDB resource. Identify the following values: (1) The ID of the VPC that you want to peer with, and (2) the ID of the Amazon Web Services account that you use to manage Amazon GameLift. If successful, VPC peering is authorized for the specified VPC.
To request authorization to delete a connection, call this operation from the Amazon Web Services account with the VPC that is peered with your Amazon GameLift fleet. Identify the following values: (1) VPC ID that you want to delete the peering connection for, and (2) ID of the Amazon Web Services account that you use to manage Amazon GameLift.
The authorization remains valid for 24 hours unless it is canceled. You must create or delete the peering connection while the authorization is valid.
related-actions
Related actions
Establishes a VPC peering connection between a virtual private cloud (VPC) in an Amazon Web Services account with the VPC for your Amazon GameLift fleet.
VPC peering enables the game servers on your fleet to communicate directly with other Amazon Web Services resources. You can peer with VPCs in any Amazon Web Services account that you have access to, including the account that you use to manage your Amazon GameLift fleets. You cannot peer with VPCs that are in different Regions. For more information, see VPC Peering with Amazon GameLift Fleets.
Before calling this operation to establish the peering connection, you first need to use CreateVpcPeeringAuthorization and identify the VPC you want to peer with. Once the authorization for the specified VPC is issued, you have 24 hours to establish the connection. These two operations handle all tasks necessary to peer the two VPCs, including acceptance, updating routing tables, etc.
To establish the connection, call this operation from the Amazon Web Services account that is used to manage the Amazon GameLift fleets. Identify the following values: (1) The ID of the fleet you want to be enable a VPC peering connection for; (2) The Amazon Web Services account with the VPC that you want to peer with; and (3) The ID of the VPC you want to peer with. This operation is asynchronous. If successful, a connection request is created. You can use continuous polling to track the request's status using DescribeVpcPeeringConnections , or by monitoring fleet events for success or failure using DescribeFleetEvents .
related-actions
Related actions
Deletes an alias.
This operation removes all record of the alias. Game clients attempting to access a server process using the deleted alias receive an error. To delete an alias, specify the alias ID to be deleted.
related-actions
Related actions
Deletes a build.
This operation permanently deletes the build resource and any uploaded build files. Deleting a build does not affect the status of any active fleets using the build, but you can no longer create new fleets with the deleted build.
To delete a build, specify the build ID.
learn-more
Learn more
Deletes all resources and information related to a container fleet and shuts down currently running fleet instances, including those in remote locations.
The container
fleet must be in ACTIVE
status to be deleted.
To delete a fleet, specify the fleet ID to be terminated. During the deletion
process,
the fleet status is changed to DELETING
.
learn-more
Learn more
Deletes a container group definition.
You can delete a container group definition if there are no fleets using the definition.
request-options
Request options:
* Delete an entire container group definition, including all versions. Specify the container group definition name, or use an ARN value without the version number.
* Delete a particular version. Specify the container group definition name and a version number, or use an ARN value that includes the version number.
*
Keep the newest versions and delete all older versions. Specify the container
group
definition name and the number of versions to retain. For example, set
VersionCountToRetain
to 5 to delete all but the five most recent
versions.
learn-more
Learn more
*
Deletes all resources and information related to a fleet and shuts down any currently running fleet instances, including those in remote locations.
If the fleet being deleted has a VPC peering connection, you first need to get a valid authorization (good for 24 hours) by calling CreateVpcPeeringAuthorization. You don't need to explicitly delete the VPC peering connection.
To delete a fleet, specify the fleet ID to be terminated. During the deletion
process,
the fleet status is changed to DELETING
. When completed, the status
switches to TERMINATED
and the fleet event FLEET_DELETED
is
emitted.
learn-more
Learn more
Removes locations from a multi-location fleet.
When deleting a location, all game server process and all instances that are still active in the location are shut down.
To delete fleet locations, identify the fleet ID and provide a list of the locations to be deleted.
If successful, GameLift sets the location status to DELETING
, and begins
to shut down existing server processes and terminate instances in each location
being
deleted. When completed, the location status changes to TERMINATED
.
learn-more
Learn more
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Terminates a game server group and permanently deletes the game server group record.
You have several options for how these resources are impacted when deleting the game server group. Depending on the type of delete operation selected, this operation might affect these resources:
* The game server group
* The corresponding Auto Scaling group
* All game servers that are currently running in the group
To delete a game server group, identify the game server group to delete and
specify
the type of delete operation to initiate. Game server groups can only be deleted
if they
are in ACTIVE
or ERROR
status.
If the delete request is successful, a series of operations are kicked off. The
game
server group status is changed to DELETE_SCHEDULED
, which prevents new game
servers from being registered and stops automatic scaling activity. Once all
game
servers in the game server group are deregistered, Amazon GameLift FleetIQ can
begin deleting resources.
If any of the delete operations fail, the game server group is placed in
ERROR
status.
Amazon GameLift FleetIQ emits delete events to Amazon CloudWatch.
learn-more
Learn more
Deletes a game session queue.
Once a queue is successfully deleted, unfulfilled StartGameSessionPlacement requests that reference the queue will fail. To delete a queue, specify the queue name.
Deletes a custom location.
Before deleting a custom location, review any fleets currently using the custom location and deregister the location if it is in use. For more information, see DeregisterCompute.
Permanently removes a FlexMatch matchmaking configuration.
To delete, specify the configuration name. A matchmaking configuration cannot be deleted if it is being used in any active matchmaking tickets.
Deletes an existing matchmaking rule set.
To delete the rule set, provide the rule set name. Rule sets cannot be deleted if they are currently being used by a matchmaking configuration.
learn-more
Learn more
*
Deletes a fleet scaling policy.
Once deleted, the policy is no longer in force and Amazon GameLift removes all record of it. To delete a scaling policy, specify both the scaling policy name and the fleet ID it is associated with.
To temporarily suspend scaling policies, use StopFleetActions. This operation suspends all policies for the fleet.
Deletes a Realtime script.
This operation permanently deletes the script record. If script files were uploaded, they are also deleted (files stored in an S3 bucket are not deleted).
To delete a script, specify the script ID. Before deleting a script, be sure to terminate all fleets that are deployed with the script being deleted. Fleet instances periodically check for script updates, and if the script record no longer exists, the instance will go into an error state and be unable to host game sessions.
learn-more
Learn more
Amazon GameLift Realtime Servers
related-actions
Related actions
Cancels a pending VPC peering authorization for the specified VPC.
If you need to delete an existing VPC peering connection, use DeleteVpcPeeringConnection.
related-actions
Related actions
Removes a VPC peering connection.
To delete the connection, you must have a valid authorization for the VPC peering connection that you want to delete..
Once a valid authorization exists, call this operation from the Amazon Web Services account that is used to manage the Amazon GameLift fleets. Identify the connection to delete by the connection ID and fleet ID. If successful, the connection is removed.
related-actions
Related actions
Removes a compute resource from an Amazon GameLift Anywhere fleet.
Deregistered computes can no longer host game sessions through Amazon GameLift.
For an Anywhere fleet that's running the Amazon GameLift Agent, the Agent handles all compute registry tasks for you. For an Anywhere fleet that doesn't use the Agent, call this operation to deregister fleet computes.
To deregister a compute, call this operation from the compute that's being deregistered and specify the compute name and the fleet ID.
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Removes the game server from a game server group.
As a result of this operation, the deregistered game server can no longer be claimed and will not be returned in a list of active game servers.
To deregister a game server, specify the game server group and game server ID. If successful, this operation emits a CloudWatch event with termination timestamp and reason.
learn-more
Learn more
Retrieves properties for an alias.
This operation returns all alias metadata and
settings. To get an alias's target fleet ID only, use ResolveAlias
.
To get alias properties, specify the alias ID. If successful, the requested alias record is returned.
related-actions
Related actions
Retrieves properties for a custom game build.
To request a build resource, specify a build ID. If successful, an object containing the build properties is returned.
learn-more
Learn more
Retrieves properties for a compute resource in an Amazon GameLift fleet.
To get a list of all
computes in a fleet, call ListCompute
.
To request information on a specific compute, provide the fleet ID and compute name.
If successful, this operation returns details for the requested compute resource. Depending on the fleet's compute type, the result includes the following information:
* For managed EC2 fleets, this operation returns information about the EC2 instance.
* For Anywhere fleets, this operation returns information about the registered compute.
Retrieves the properties for a container fleet.
When requesting attributes for multiple fleets, use the pagination parameters to retrieve results as a set of sequential pages.
request-options
Request options
* Get container fleet properties for a single fleet. Provide either the fleet ID or ARN value.
results
Results
If successful, a ContainerFleet
object is returned. This object includes
the fleet properties, including information about the most recent deployment.
Some API operations limit the number of fleet IDs that allowed in one request. If a request exceeds this limit, the request fails and the error message contains the maximum allowed number.
Retrieves the properties of a container group definition, including all container definitions in the group.
request-options
Request options:
* Retrieve the latest version of a container group definition. Specify the container group definition name only, or use an ARN value without a version number.
* Retrieve a particular version. Specify the container group definition name and a version number, or use an ARN value that includes the version number.
results
Results:
If successful, this operation returns the complete properties of a container group definition version.
learn-more
Learn more
*
Retrieves the instance limits and current utilization for an Amazon Web Services Region or location.
Instance limits control the number of instances, per instance type, per location, that your Amazon Web Services account can use. Learn more at Amazon EC2 Instance Types. The information returned includes the maximum number of instances allowed and your account's current usage across all fleets. This information can affect your ability to scale your Amazon GameLift fleets. You can request a limit increase for your account by using the Service limits page in the Amazon GameLift console.
Instance limits differ based on whether the instances are deployed in a fleet's home Region or in a remote location. For remote locations, limits also differ based on the combination of home Region and remote location. All requests must specify an Amazon Web Services Region (either explicitly or as your default settings). To get the limit for a remote location, you must also specify the location. For example, the following requests all return different results:
*
Request specifies the Region ap-northeast-1
with no location. The
result is limits and usage data on all instance types that are deployed in
us-east-2
, by all of the fleets that reside in
ap-northeast-1
.
*
Request specifies the Region us-east-1
with location
ca-central-1
. The result is limits and usage data on all
instance types that are deployed in ca-central-1
, by all of the
fleets that reside in us-east-2
. These limits do not affect fleets
in any other Regions that deploy instances to ca-central-1
.
*
Request specifies the Region eu-west-1
with location
ca-central-1
. The result is limits and usage data on all
instance types that are deployed in ca-central-1
, by all of the
fleets that reside in eu-west-1
.
This operation can be used in the following ways:
* To get limit and usage data for all instance types that are deployed in an Amazon Web Services Region by fleets that reside in the same Region: Specify the Region only. Optionally, specify a single instance type to retrieve information for.
* To get limit and usage data for all instance types that are deployed to a remote location by fleets that reside in different Amazon Web Services Region: Provide both the Amazon Web Services Region and the remote location. Optionally, specify a single instance type to retrieve information for.
If successful, an EC2InstanceLimits
object is returned with limits and
usage data for each requested instance type.
learn-more
Learn more
Retrieves core fleet-wide properties for fleets in an Amazon Web Services Region.
Properties include the computing hardware and deployment configuration for instances in the fleet.
You can use this operation in the following ways:
* To get attributes for specific fleets, provide a list of fleet IDs or fleet ARNs.
* To get attributes for all fleets, do not provide a fleet identifier.
When requesting attributes for multiple fleets, use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a FleetAttributes
object is returned for each fleet
requested, unless the fleet identifier is not found.
Some API operations limit the number of fleet IDs that allowed in one request. If a request exceeds this limit, the request fails and the error message contains the maximum allowed number.
learn-more
Learn more
Retrieves the resource capacity settings for one or more fleets.
For a container fleet, this operation also returns counts for game server container groups.
With multi-location fleets, this operation retrieves data for the fleet's home
Region
only. To retrieve capacity for remote locations, see
DescribeFleetLocationCapacity
.
This operation can be used in the following ways:
* To get capacity data for one or more specific fleets, provide a list of fleet IDs or fleet ARNs.
* To get capacity data for all fleets, do not provide a fleet identifier.
When requesting multiple fleets, use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a FleetCapacity
object is returned for each requested
fleet ID. Each FleetCapacity
object includes a Location
property, which is set to the fleet's home Region. Capacity values are returned
only for
fleets that currently exist.
Some API operations may limit the number of fleet IDs that are allowed in one request. If a request exceeds this limit, the request fails and the error message includes the maximum allowed.
learn-more
Learn more
Retrieves information about a managed container fleet deployment.
request-options
Request options
* Get information about the latest deployment for a specific fleet. Provide the fleet ID or ARN.
* Get information about a specific deployment. Provide the fleet ID or ARN and the deployment ID.
results
Results
If successful, a FleetDeployment
object is returned.
Retrieves entries from a fleet's event log.
Fleet events are initiated by changes in status, such as during fleet creation and termination, changes in capacity, etc. If a fleet has multiple locations, events are also initiated by changes to status and capacity in remote locations.
You can specify a time range to limit the result set. Use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a collection of event log entries matching the request are returned.
learn-more
Learn more
Retrieves information on a fleet's remote locations, including life-cycle status and any suspended fleet activity.
This operation can be used in the following ways:
* To get data for specific locations, provide a fleet identifier and a list of locations. Location data is returned in the order that it is requested.
* To get data for all locations, provide a fleet identifier only. Location data is returned in no particular order.
When requesting attributes for multiple locations, use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a LocationAttributes
object is returned for each requested
location. If the fleet does not have a requested location, no information is
returned.
This operation does not return the home Region. To get information on a fleet's
home
Region, call DescribeFleetAttributes
.
learn-more
Learn more
Setting up Amazon GameLift fleets
Amazon GameLift service locations for managed hosting
Retrieves the resource capacity settings for a fleet location.
The data returned includes the current capacity (number of EC2 instances) and some scaling settings for the requested fleet location. For a managed container fleet, this operation also returns counts for game server container groups.
Use this operation to retrieve capacity information for a fleet's remote
location or
home Region (you can also retrieve home Region capacity by calling
DescribeFleetCapacity
).
To retrieve capacity data, identify a fleet and location.
If successful, a FleetCapacity
object is returned for the requested fleet
location.
learn-more
Learn more
Setting up Amazon GameLift fleets
Amazon GameLift service locations for managed hosting
Retrieves current usage data for a fleet location.
Utilization data provides a
snapshot of current game hosting activity at the requested location. Use this
operation
to retrieve utilization information for a fleet's remote location or home Region
(you
can also retrieve home Region utilization by calling
DescribeFleetUtilization
).
To retrieve utilization data, identify a fleet and location.
If successful, a FleetUtilization
object is returned for the requested
fleet location.
learn-more
Learn more
Setting up Amazon GameLift fleets
Amazon GameLift service locations for managed hosting
Retrieves a fleet's inbound connection permissions.
Inbound permissions specify IP addresses and port settings that incoming traffic can use to access server processes in the fleet. Game server processes that are running in the fleet must use a port that falls within this range. To connect to game server processes on a managed container fleet, the port settings should include one or more of the container fleet's connection ports.
Use this operation in the following ways:
* To retrieve the port settings for a fleet, identify the fleet's unique identifier.
* To check the status of recent updates to a fleet remote location, specify the fleet ID and a location. Port setting updates can take time to propagate across all locations.
If successful, a set of IpPermission
objects is returned for the
requested fleet ID. When specifying a location, this operation returns a pending
status.
If the requested fleet has been deleted, the result set is empty.
learn-more
Learn more
Retrieves utilization statistics for one or more fleets.
Utilization data provides a snapshot of how the fleet's hosting resources are currently being used. For fleets with remote locations, this operation retrieves data for the fleet's home Region only. See DescribeFleetLocationUtilization to get utilization statistics for a fleet's remote locations.
This operation can be used in the following ways:
* To get utilization data for one or more specific fleets, provide a list of fleet IDs or fleet ARNs.
* To get utilization data for all fleets, do not provide a fleet identifier.
When requesting multiple fleets, use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a
FleetUtilization
object is returned for each requested fleet ID, unless the
fleet identifier is not found. Each fleet utilization object includes a
Location
property, which is set to the fleet's home Region.
Some API operations may limit the number of fleet IDs allowed in one request. If a request exceeds this limit, the request fails and the error message includes the maximum allowed.
learn-more
Learn more
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Retrieves information for a registered game server.
Information includes game server status, health check info, and the instance that the game server is running on.
To retrieve game server information, specify the game server ID. If successful, the requested game server object is returned.
learn-more
Learn more
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Retrieves information on a game server group.
This operation returns only properties related to Amazon GameLift FleetIQ. To view or update properties for the corresponding Auto Scaling group, such as launch template, auto scaling policies, and maximum/minimum group size, access the Auto Scaling group directly.
To get attributes for a game server group, provide a group name or ARN value. If
successful, a GameServerGroup
object is returned.
learn-more
Learn more
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Retrieves status information about the Amazon EC2 instances associated with a Amazon GameLift FleetIQ game server group.
Use this operation to detect when instances are active or not available to host new game servers.
To request status for all instances in the game server group, provide a game
server
group ID only. To request status for specific instances, provide the game server
group
ID and one or more instance IDs. Use the pagination parameters to retrieve
results in
sequential segments. If successful, a collection of GameServerInstance
objects is returned.
This operation is not designed to be called with every game server claim request; this practice can cause you to exceed your API limit, which results in errors. Instead, as a best practice, cache the results and refresh your cache no more than once every 10 seconds.
learn-more
Learn more
Retrieves additional game session properties, including the game session protection policy in force, a set of one or more game sessions in a specific fleet location.
You can optionally filter the results by current game session status.
This operation can be used in the following ways:
* To retrieve details for all game sessions that are currently running on all locations in a fleet, provide a fleet or alias ID, with an optional status filter. This approach returns details from the fleet's home Region and all remote locations.
* To retrieve details for all game sessions that are currently running on a specific fleet location, provide a fleet or alias ID and a location name, with optional status filter. The location can be the fleet's home Region or any remote location.
* To retrieve details for a specific game session, provide the game session ID. This approach looks for the game session ID in all fleets that reside in the Amazon Web Services Region defined in the request.
Use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a GameSessionDetail
object is returned for each game
session that matches the request.
learn-more
Learn more
Retrieves information, including current status, about a game session placement request.
To get game session placement details, specify the placement ID.
This operation is not designed to be continually called to track game session
status.
This practice can cause you to exceed your API limit, which results in errors.
Instead,
you must configure configure an Amazon Simple Notification Service (SNS) topic
to receive notifications from
FlexMatch or queues. Continuously polling with DescribeGameSessionPlacement
should only be used for games in development with low game session usage.
Retrieves the properties for one or more game session queues.
When requesting multiple queues, use the pagination parameters to retrieve results as a set of sequential pages. When specifying a list of queues, objects are returned only for queues that currently exist in the Region.
learn-more
Learn more
Retrieves a set of one or more game sessions in a specific fleet location.
You can optionally filter the results by current game session status.
This operation can be used in the following ways:
* To retrieve all game sessions that are currently running on all locations in a fleet, provide a fleet or alias ID, with an optional status filter. This approach returns all game sessions in the fleet's home Region and all remote locations.
* To retrieve all game sessions that are currently running on a specific fleet location, provide a fleet or alias ID and a location name, with optional status filter. The location can be the fleet's home Region or any remote location.
* To retrieve a specific game session, provide the game session ID. This approach looks for the game session ID in all fleets that reside in the Amazon Web Services Region defined in the request.
Use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a GameSession
object is returned for each game session
that matches the request.
This operation is not designed to be continually called to track game session
status.
This practice can cause you to exceed your API limit, which results in errors.
Instead,
you must configure an Amazon Simple Notification Service (SNS) topic to receive
notifications from FlexMatch or
queues. Continuously polling with DescribeGameSessions
should only be used
for games in development with low game session usage.
Available in Amazon GameLift Local.
learn-more
Learn more
Retrieves information about the EC2 instances in an Amazon GameLift managed fleet, including instance ID, connection data, and status.
You can use this operation with a
multi-location fleet to get location-specific instance information. As an
alternative,
use the operations ListCompute
and DescribeCompute
to retrieve information for compute resources, including EC2 and Anywhere
fleets.
You can call this operation in the following ways:
* To get information on all instances in a fleet's home Region, specify the fleet ID.
* To get information on all instances in a fleet's remote location, specify the fleet ID and location name.
* To get information on a specific instance in a fleet, specify the fleet ID and instance ID.
Use the pagination parameters to retrieve results as a set of sequential pages.
If successful, this operation returns Instance
objects for each requested
instance, listed in no particular order. If you call this operation for an
Anywhere
fleet, you receive an InvalidRequestException.
learn-more
Learn more
Remotely connect to fleet instances
related-actions
Related actions
Retrieves one or more matchmaking tickets.
Use this operation to retrieve ticket information, including--after a successful match is made--connection information for the resulting new game session.
To request matchmaking tickets, provide a list of up to 10 ticket IDs. If the request is successful, a ticket object is returned for each requested ID that currently exists.
This operation is not designed to be continually called to track matchmaking ticket status. This practice can cause you to exceed your API limit, which results in errors. Instead, as a best practice, set up an Amazon Simple Notification Service to receive notifications, and provide the topic ARN in the matchmaking configuration.
learn-more
Learn more
Retrieves the details of FlexMatch matchmaking configurations.
This operation offers the following options: (1) retrieve all matchmaking configurations, (2) retrieve configurations for a specified list, or (3) retrieve all configurations that use a specified rule set name. When requesting multiple items, use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a configuration is returned for each requested name. When specifying a list of names, only configurations that currently exist are returned.
learn-more
Learn more
Retrieves the details for FlexMatch matchmaking rule sets.
You can request all existing rule sets for the Region, or provide a list of one or more rule set names. When requesting multiple items, use the pagination parameters to retrieve results as a set of sequential pages. If successful, a rule set is returned for each requested name.
learn-more
Learn more
*
Retrieves properties for one or more player sessions.
This action can be used in the following ways:
* To retrieve a specific player session, provide the player session ID only.
* To retrieve all player sessions in a game session, provide the game session ID only.
* To retrieve all player sessions for a specific player, provide a player ID only.
To request player sessions, specify either a player session ID, game session ID,
or
player ID. You can filter this request by player session status. If you provide
a specific PlayerSessionId
or PlayerId
, Amazon GameLift ignores the filter
criteria.
Use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a PlayerSession
object is returned for each session that
matches the request.
related-actions
Related actions
Retrieves a fleet's runtime configuration settings.
The runtime configuration
determines which server processes run, and how they run, and how many run
concurrently
on computes in managed EC2 and Anywhere fleets. You can update a fleet's runtime
configuration
at any time using UpdateRuntimeConfiguration
.
To get the current runtime configuration for a fleet, provide the fleet ID.
If successful, a RuntimeConfiguration
object is returned for the
requested fleet. If the requested fleet has been deleted, the result set is
empty.
learn-more
Learn more
Retrieves all scaling policies applied to a fleet.
To get a fleet's scaling policies, specify the fleet ID. You can filter this
request
by policy status, such as to retrieve only active scaling policies. Use the
pagination
parameters to retrieve results as a set of sequential pages. If successful, set
of
ScalingPolicy
objects is returned for the fleet.
A fleet may have all of its scaling policies suspended. This operation does not affect the status of the scaling policies, which remains ACTIVE.
Retrieves properties for a Realtime script.
To request a script record, specify the script ID. If successful, an object containing the script properties is returned.
learn-more
Learn more
Amazon GameLift Realtime Servers
related-actions
Related actions
Retrieves valid VPC peering authorizations that are pending for the Amazon Web Services account.
This operation returns all VPC peering authorizations and requests for peering. This includes those initiated and received by this account.
related-actions
Related actions
Retrieves information on VPC peering connections.
Use this operation to get peering information for all fleets or for one specific fleet ID.
To retrieve connection information, call this operation from the Amazon Web Services account that is used to manage the Amazon GameLift fleets. Specify a fleet ID or leave the parameter empty to retrieve all connection records. If successful, the retrieved information includes both active and pending connections. Active connections identify the IpV4 CIDR block that the VPC uses to connect.
related-actions
Related actions
Requests authorization to remotely connect to a hosting resource in a Amazon GameLift managed fleet.
This operation is not used with Amazon GameLift Anywhere fleets.
request-options
Request options
To request access to a compute, specify the compute name and the fleet ID.
results
Results
If successful, this operation returns a set of temporary Amazon Web Services credentials, including a two-part access key and a session token.
With a managed EC2 fleet (where compute type is EC2
), use these
credentials with Amazon EC2 Systems Manager (SSM) to start a session with the
compute. For more
details, see Starting a session (CLI)
in the Amazon EC2 Systems Manager User
Guide*.
Requests an authentication token from Amazon GameLift for a compute resource in an Amazon GameLift fleet.
Game servers that are running on the compute use this token to communicate
with the Amazon GameLift service, such as when calling the Amazon GameLift
server SDK action
InitSDK()
. Authentication tokens are valid for a limited time span, so
you need to request a fresh token before the current token expires.
request-options
Request options
*
For managed EC2 fleets (compute type EC2
), auth token retrieval
and refresh is handled automatically. All game servers that are running on all
fleet instances have access to a valid auth token.
*
For Anywhere fleets (compute type ANYWHERE
), if you're using the
Amazon GameLift Agent, auth token retrieval and refresh is handled automatically
for any
compute where the Agent is running. If you're not using
the Agent, create a mechanism to retrieve and refresh auth tokens for computes
that are running game server processes.
learn-more
Learn more
*
*
*
Server SDK reference guides (for version 5.x)
Retrieves the location of stored game session logs for a specified game session on Amazon GameLift managed fleets.
When a game session is terminated, Amazon GameLift automatically stores the logs in Amazon S3 and retains them for 14 days. Use this URL to download the logs.
See the Amazon Web Services Service Limits page for maximum log file sizes. Log files that exceed this limit are not saved.
Requests authorization to remotely connect to an instance in an Amazon GameLift managed fleet.
Use this operation to connect to instances with game servers that use Amazon
GameLift server SDK
4.x or earlier. To connect to instances with game servers that use server SDK
5.x or
later, call GetComputeAccess
.
To request access to an instance, specify IDs for the instance and the fleet it belongs to. You can retrieve instance IDs for a fleet by calling DescribeInstances with the fleet ID.
If successful, this operation returns an IP address and credentials. The returned credentials match the operating system of the instance, as follows:
* For a Windows instance: returns a user name and secret (password) for use with a Windows Remote Desktop client.
*
For a Linux instance: returns a user name and secret (RSA private key) for use
with an SSH client. You must save the secret to a .pem
file. If
you're using the CLI, see the example Get credentials for a Linux
instance
for tips on automatically
saving the secret to a .pem
file.
learn-more
Learn more
Remotely connect to fleet instances
related-actions
Related actions
Retrieves all aliases for this Amazon Web Services account.
You can filter the result set by alias name and/or routing strategy type. Use the pagination parameters to retrieve results in sequential pages.
Returned aliases are not listed in any particular order.
related-actions
Related actions
Retrieves build resources for all builds associated with the Amazon Web Services account in use.
You
can limit results to builds that are in a specific status by using the
Status
parameter. Use the pagination parameters to retrieve results in
a set of sequential pages.
Build resources are not listed in any particular order.
learn-more
Learn more
Retrieves information on the compute resources in an Amazon GameLift fleet.
Use the pagination parameters to retrieve results in a set of sequential pages.
request-options
Request options:
* Retrieve a list of all computes in a fleet. Specify a fleet ID.
* Retrieve a list of all computes in a specific fleet location. Specify a fleet ID and location.
results
Results:
If successful, this operation returns information on a set of computes. Depending on the type of fleet, the result includes the following information:
*
For managed EC2 fleets (compute type EC2
), this operation returns
information about the EC2 instance. Compute names are EC2 instance IDs.
*
For Anywhere fleets (compute type ANYWHERE
), this operation
returns compute names and details as provided when the compute was registered
with RegisterCompute
. This includes
GameLiftServiceSdkEndpoint
or
GameLiftAgentEndpoint
.
Retrieves a collection of container fleet resources in an Amazon Web Services Region.
For fleets that have multiple locations, this operation retrieves fleets based on their home Region only.
request-options
Request options
* Get a list of all fleets. Call this operation without specifying a container group definition.
* Get a list of fleets filtered by container group definition. Provide the container group definition name or ARN value.
* To get a list of all Realtime Servers fleets with a specific configuration script, provide the script ID.
Use the pagination parameters to retrieve results as a set of sequential pages.
If successful, this operation returns a collection of container fleets that match the request parameters. A NextToken value is also returned if there are more result pages to retrieve.
Fleet IDs are returned in no particular order.
list_container_group_definition_versions(client, input, options \\ [])
View SourceRetrieves all versions of a container group definition.
Use the pagination parameters to retrieve results in a set of sequential pages.
request-options
Request options:
* Get all versions of a specified container group definition. Specify the container group definition name or ARN value. (If the ARN value has a version number, it's ignored.)
results
Results:
If successful, this operation returns the complete properties of a set of container group definition versions that match the request.
This operation returns the list of container group definitions in descending version order (latest first).
learn-more
Learn more
*
Retrieves container group definitions for the Amazon Web Services account and Amazon Web Services Region.
Use the pagination parameters to retrieve results in a set of sequential pages.
This operation returns only the latest version of each definition. To retrieve
all
versions of a container group definition, use
ListContainerGroupDefinitionVersions
.
request-options
Request options:
* Retrieve the most recent versions of all container group definitions.
* Retrieve the most recent versions of all container group definitions, filtered by type. Specify the container group type to filter on.
results
Results:
If successful, this operation returns the complete properties of a set of container group definition versions that match the request.
This operation returns the list of container group definitions in no particular order.
learn-more
Learn more
*
Retrieves a collection of container fleet deployments in an Amazon Web Services Region.
request-options
Request options
* Get a list of all deployments. Call this operation without specifying a fleet ID.
* Get a list of all deployments for a fleet. Specify the container fleet ID or ARN value.
* To get a list of all Realtime Servers fleets with a specific configuration script, provide the script ID.
Use the pagination parameters to retrieve results as a set of sequential pages.
results
Results
If successful, this operation returns a list of deployments that match the request parameters. A NextToken value is also returned if there are more result pages to retrieve.
Fleet IDs are returned in no particular order.
Retrieves a collection of fleet resources in an Amazon Web Services Region.
You can filter the result set to find only those fleets that are deployed with a specific build or script. For fleets that have multiple locations, this operation retrieves fleets based on their home Region only.
You can use operation in the following ways:
* To get a list of all fleets in a Region, don't provide a build or script identifier.
* To get a list of all fleets where a specific game build is deployed, provide the build ID.
* To get a list of all Realtime Servers fleets with a specific configuration script, provide the script ID.
Use the pagination parameters to retrieve results as a set of sequential pages.
If successful, this operation returns a list of fleet IDs that match the request parameters. A NextToken value is also returned if there are more result pages to retrieve.
Fleet IDs are returned in no particular order.
Lists a game server groups.
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Retrieves information on all game servers that are currently active in a specified game server group.
You can opt to sort the list by game server age. Use the pagination parameters to retrieve results in a set of sequential segments.
learn-more
Learn more
Lists all custom and Amazon Web Services locations.
Retrieves script records for all Realtime scripts that are associated with the Amazon Web Services account in use.
learn-more
Learn more
Amazon GameLift Realtime Servers
related-actions
Related actions
Retrieves all tags assigned to a Amazon GameLift resource.
Use resource tags to organize Amazon Web Services resources for a range of purposes. This operation handles the permissions necessary to manage tags for Amazon GameLift resources that support tagging.
To list tags for a resource, specify the unique ARN value for the resource.
learn-more
Learn more
Tagging Amazon Web Services Resources in the Amazon Web Services General Reference
Amazon Web Services Tagging Strategies
related-actions
Related actions
Creates or updates a scaling policy for a fleet.
Scaling policies are used to automatically scale a fleet's hosting capacity to meet player demand. An active scaling policy instructs Amazon GameLift to track a fleet metric and automatically change the fleet's capacity when a certain threshold is reached. There are two types of scaling policies: target-based and rule-based. Use a target-based policy to quickly and efficiently manage fleet scaling; this option is the most commonly used. Use rule-based policies when you need to exert fine-grained control over auto-scaling.
Fleets can have multiple scaling policies of each type in force at the same time; you can have one target-based policy, one or multiple rule-based scaling policies, or both. We recommend caution, however, because multiple auto-scaling policies can have unintended consequences.
Learn more about how to work with auto-scaling in Set Up Fleet Automatic Scaling.
target-based-policy
Target-based policy
A target-based policy tracks a single metric: PercentAvailableGameSessions. This metric tells us how much of a fleet's hosting capacity is ready to host game sessions but is not currently in use. This is the fleet's buffer; it measures the additional player demand that the fleet could handle at current capacity. With a target-based policy, you set your ideal buffer size and leave it to Amazon GameLift to take whatever action is needed to maintain that target.
For example, you might choose to maintain a 10% buffer for a fleet that has the capacity to host 100 simultaneous game sessions. This policy tells Amazon GameLift to take action whenever the fleet's available capacity falls below or rises above 10 game sessions. Amazon GameLift will start new instances or stop unused instances in order to return to the 10% buffer.
To create or update a target-based policy, specify a fleet ID and name, and set
the
policy type to "TargetBased". Specify the metric to track
(PercentAvailableGameSessions)
and reference a TargetConfiguration
object with your desired buffer value.
Exclude all other parameters. On a successful request, the policy name is
returned. The
scaling policy is automatically in force as soon as it's successfully created.
If the
fleet's auto-scaling actions are temporarily suspended, the new policy will be
in force
once the fleet actions are restarted.
rule-based-policy
Rule-based policy
A rule-based policy tracks specified fleet metric, sets a threshold value, and specifies the type of action to initiate when triggered. With a rule-based policy, you can select from several available fleet metrics. Each policy specifies whether to scale up or scale down (and by how much), so you need one policy for each type of action.
For example, a policy may make the following statement: "If the percentage of idle instances is greater than 20% for more than 15 minutes, then reduce the fleet capacity by 10%."
A policy's rule statement has the following structure:
If [MetricName]
is [ComparisonOperator]
[Threshold]
for [EvaluationPeriods]
minutes, then [ScalingAdjustmentType]
to/by [ScalingAdjustment]
. To implement the example, the rule statement would look like this:
If [PercentIdleInstances]
is [GreaterThanThreshold]
[20]
for [15]
minutes, then [PercentChangeInCapacity]
to/by [10]
.
To create or update a scaling policy, specify a unique combination of name and fleet ID, and set the policy type to "RuleBased". Specify the parameter values for a policy rule statement. On a successful request, the policy name is returned. Scaling policies are automatically in force as soon as they're successfully created. If the fleet's auto-scaling actions are temporarily suspended, the new policy will be in force once the fleet actions are restarted.
Registers a compute resource in an Amazon GameLift Anywhere fleet.
For an Anywhere fleet that's running the Amazon GameLift Agent, the Agent handles all compute registry tasks for you. For an Anywhere fleet that doesn't use the Agent, call this operation to register fleet computes.
To register a compute, give the compute a name (must be unique within the fleet) and specify the compute resource's DNS name or IP address. Provide a fleet ID and a fleet location to associate with the compute being registered. You can optionally include the path to a TLS certificate on the compute resource.
If successful, this operation returns compute details, including an Amazon
GameLift SDK
endpoint or Agent endpoint. Game server processes running on the compute can use
this
endpoint to communicate with the Amazon GameLift service. Each server process
includes the SDK
endpoint in its call to the Amazon GameLift server SDK action InitSDK()
.
To view compute details, call DescribeCompute with the compute name.
learn-more
Learn more
*
*
*
Server SDK reference guides (for version 5.x)
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Creates a new game server resource and notifies Amazon GameLift FleetIQ that the game server is ready to host gameplay and players.
This operation is called by a game server process that is running on an instance in a game server group. Registering game servers enables Amazon GameLift FleetIQ to track available game servers and enables game clients and services to claim a game server for a new game session.
To register a game server, identify the game server group and instance where the game server is running, and provide a unique identifier for the game server. You can also include connection and game server data.
Once a game server is successfully registered, it is put in status
AVAILABLE
. A request to register a game server may fail if the instance
it is running on is in the process of shutting down as part of instance
balancing or
scale-down activity.
learn-more
Learn more
Retrieves a fresh set of credentials for use when uploading a new set of game build files to Amazon GameLift's Amazon S3.
This is done as part of the build creation process; see
CreateBuild.
To request new credentials, specify the build ID as returned with an initial
CreateBuild
request. If successful, a new set of credentials are
returned, along with the S3 storage location associated with the build ID.
learn-more
Learn more
Attempts to retrieve a fleet ID that is associated with an alias.
Specify a unique alias identifier.
If the alias has a SIMPLE
routing strategy, Amazon GameLift returns a fleet
ID.
If the alias has a TERMINAL
routing strategy, the result is a
TerminalRoutingStrategyException
.
related-actions
Related actions
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Reinstates activity on a game server group after it has been suspended.
A game server group might be suspended by the SuspendGameServerGroup operation, or it might be suspended involuntarily due to a configuration problem. In the second case, you can manually resume activity on the group once the configuration problem has been resolved. Refer to the game server group status and status reason for more information on why group activity is suspended.
To resume activity, specify a game server group ARN and the type of activity to
be
resumed. If successful, a GameServerGroup
object is returned showing that
the resumed activity is no longer listed in SuspendedActions
.
learn-more
Learn more
Retrieves all active game sessions that match a set of search criteria and sorts them into a specified order.
This operation is not designed to continually track game session status because that practice can cause you to exceed your API limit and generate errors. Instead, configure an Amazon Simple Notification Service (Amazon SNS) topic to receive notifications from a matchmaker or a game session placement queue.
When searching for game sessions, you specify exactly where you want to search and provide a search filter expression, a sort expression, or both. A search request can search only one fleet, but it can search all of a fleet's locations.
This operation can be used in the following ways:
* To search all game sessions that are currently running on all locations in a fleet, provide a fleet or alias ID. This approach returns game sessions in the fleet's home Region and all remote locations that fit the search criteria.
* To search all game sessions that are currently running on a specific fleet location, provide a fleet or alias ID and a location name. For location, you can specify a fleet's home Region or any remote location.
Use the pagination parameters to retrieve results as a set of sequential pages.
If successful, a GameSession
object is returned for each game session
that matches the request. Search finds game sessions that are in ACTIVE
status only. To retrieve information on game sessions in other statuses, use
DescribeGameSessions .
To set search and sort criteria, create a filter expression using the following game session attributes. For game session search examples, see the Examples section of this topic.
*
gameSessionId -- A unique identifier for the game session. You can use
either a
GameSessionId
or GameSessionArn
value.
*
gameSessionName -- Name assigned to a game session. Game session names do not need to be unique to a game session.
*
gameSessionProperties -- A set of key-value pairs that can store custom data
in a game session.
For example: {"Key": "difficulty", "Value": "novice"}
.
The filter expression must specify the GameProperty
-- a Key
and a string
Value
to search for the game sessions.
For example, to search for the above key-value pair, specify the following
search filter: gameSessionProperties.difficulty = "novice"
.
All game property values are searched as strings.
For examples of searching game sessions, see the ones below, and also see Search game sessions by game property.
*
maximumSessions -- Maximum number of player sessions allowed for a game session.
*
creationTimeMillis -- Value indicating when a game session was created. It is expressed in Unix time as milliseconds.
*
playerSessionCount -- Number of players currently connected to a game session. This value changes rapidly as players join the session or drop out.
*
hasAvailablePlayerSessions -- Boolean value indicating whether a game session has reached its maximum number of players. It is highly recommended that all search requests include this filter attribute to optimize search performance and return only sessions that players can join.
Returned values for playerSessionCount
and
hasAvailablePlayerSessions
change quickly as players join sessions
and others drop out. Results should be considered a snapshot in time. Be sure to
refresh search results often, and handle sessions that fill up before a player
can
join.
Resumes certain types of activity on fleet instances that were suspended with StopFleetActions. For multi-location fleets, fleet actions are managed separately for each location. Currently, this operation is used to restart a fleet's auto-scaling activity.
This operation can be used in the following ways:
* To restart actions on instances in the fleet's home Region, provide a fleet ID and the type of actions to resume.
* To restart actions on instances in one of the fleet's remote locations, provide a fleet ID, a location name, and the type of actions to resume.
If successful, Amazon GameLift once again initiates scaling events as triggered by the fleet's scaling policies. If actions on the fleet location were never stopped, this operation will have no effect.
learn-more
Learn more
Places a request for a new game session in a queue.
When processing a placement request, Amazon GameLift searches for available resources on the queue's destinations, scanning each until it finds resources or the placement request times out.
A game session placement request can also request player sessions. When a new game session is successfully created, Amazon GameLift creates a player session for each player included in the request.
When placing a game session, by default Amazon GameLift tries each fleet in the order they are listed in the queue configuration. Ideally, a queue's destinations are listed in preference order.
Alternatively, when requesting a game session with players, you can also provide latency data for each player in relevant Regions. Latency data indicates the performance lag a player experiences when connected to a fleet in the Region. Amazon GameLift uses latency data to reorder the list of destinations to place the game session in a Region with minimal lag. If latency data is provided for multiple players, Amazon GameLift calculates each Region's average lag for all players and reorders to get the best game play across all players.
To place a new game session request, specify the following:
* The queue name and a set of game session properties and settings
* A unique ID (such as a UUID) for the placement. You use this ID to track the status of the placement request
* (Optional) A set of player data and a unique player ID for each player that you are joining to the new game session (player data is optional, but if you include it, you must also provide a unique ID for each player)
* Latency data for all players (if you want to optimize game play for the players)
If successful, a new game session placement is created.
To track the status of a placement request, call
DescribeGameSessionPlacement
and check the request's status. If the status
is FULFILLED
, a new game session has been created and a game session ARN
and Region are referenced. If the placement request times out, submit a new
request to the same
queue or a different queue.
Finds new players to fill open slots in currently running game sessions.
The backfill match process is essentially identical to the process of forming new matches. Backfill requests use the same matchmaker that was used to make the original match, and they provide matchmaking data for all players currently in the game session. FlexMatch uses this information to select new players so that backfilled match continues to meet the original match requirements.
When using FlexMatch with Amazon GameLift managed hosting, you can request a
backfill match from
a client service by calling this operation with a GameSessions
ID. You also
have the option of making backfill requests directly from your game server. In
response
to a request, FlexMatch creates player sessions for the new players, updates the
GameSession
resource, and sends updated matchmaking data to the game
server. You can request a backfill match at any point after a game session is
started.
Each game session can have only one active backfill request at a time; a
subsequent
request automatically replaces the earlier request.
When using FlexMatch as a standalone component, request a backfill match by calling this operation without a game session identifier. As with newly formed matches, matchmaking results are returned in a matchmaking event so that your game can update the game session that is being backfilled.
To request a backfill match, specify a unique ticket ID, the original
matchmaking
configuration, and matchmaking data for all current players in the game session
being
backfilled. Optionally, specify the GameSession
ARN. If successful, a match
backfill ticket is created and returned with status set to QUEUED. Track the
status of
backfill tickets using the same method for tracking tickets for new matches.
Only game sessions created by FlexMatch are supported for match backfill.
learn-more
Learn more
Backfill existing games with FlexMatch
Matchmaking events (reference)
Uses FlexMatch to create a game match for a group of players based on custom matchmaking rules.
With games that use Amazon GameLift managed hosting, this operation also triggers Amazon GameLift to find hosting resources and start a new game session for the new match. Each matchmaking request includes information on one or more players and specifies the FlexMatch matchmaker to use. When a request is for multiple players, FlexMatch attempts to build a match that includes all players in the request, placing them in the same team and finding additional players as needed to fill the match.
To start matchmaking, provide a unique ticket ID, specify a matchmaking
configuration,
and include the players to be matched. You must also include any player
attributes that
are required by the matchmaking configuration's rule set. If successful, a
matchmaking
ticket is returned with status set to QUEUED
.
Track matchmaking events to respond as needed and acquire game session connection information for successfully completed matches. Ticket status updates are tracked using event notification through Amazon Simple Notification Service, which is defined in the matchmaking configuration.
learn-more
Learn more
Add FlexMatch to a game client
Suspends certain types of activity in a fleet location.
Currently, this operation is used to stop auto-scaling activity. For multi-location fleets, fleet actions are managed separately for each location.
Stopping fleet actions has several potential purposes. It allows you to temporarily stop auto-scaling activity but retain your scaling policies for use in the future. For multi-location fleets, you can set up fleet-wide auto-scaling, and then opt out of it for certain locations.
This operation can be used in the following ways:
* To stop actions on instances in the fleet's home Region, provide a fleet ID and the type of actions to suspend.
* To stop actions on instances in one of the fleet's remote locations, provide a fleet ID, a location name, and the type of actions to suspend.
If successful, Amazon GameLift no longer initiates scaling events except in response to manual changes using UpdateFleetCapacity. To restart fleet actions again, call StartFleetActions.
learn-more
Learn more
Cancels a game session placement that is in PENDING
status.
To stop a
placement, provide the placement ID values. If successful, the placement is
moved to
CANCELLED
status.
Cancels a matchmaking ticket or match backfill ticket that is currently being processed.
To stop the matchmaking operation, specify the ticket ID. If successful, work
on the ticket is stopped, and the ticket status is changed to
CANCELLED
.
This call is also used to turn off automatic backfill for an individual game
session.
This is for game sessions that are created with a matchmaking configuration that
has
automatic backfill enabled. The ticket ID is included in the MatchmakerData
of an updated game session object, which is provided to the game server.
If the operation is successful, the service sends back an empty JSON struct with the HTTP 200 response (not an empty HTTP body).
learn-more
Learn more
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Temporarily stops activity on a game server group without terminating instances or the game server group.
You can restart activity by calling ResumeGameServerGroup. You can suspend the following activity:
*
Instance type replacement - This activity evaluates the current game hosting viability of all Spot instance types that are defined for the game server group. It updates the Auto Scaling group to remove nonviable Spot Instance types, which have a higher chance of game server interruptions. It then balances capacity across the remaining viable Spot Instance types. When this activity is suspended, the Auto Scaling group continues with its current balance, regardless of viability. Instance protection, utilization metrics, and capacity scaling activities continue to be active.
To suspend activity, specify a game server group ARN and the type of activity to
be
suspended. If successful, a GameServerGroup
object is returned showing that
the activity is listed in SuspendedActions
.
learn-more
Learn more
Assigns a tag to an Amazon GameLift resource.
You can use tags to organize resources, create IAM permissions policies to manage access to groups of resources, customize Amazon Web Services cost breakdowns, and more. This operation handles the permissions necessary to manage tags for Amazon GameLift resources that support tagging.
To add a tag to a resource, specify the unique ARN value for the resource and provide a tag list containing one or more tags. The operation succeeds even if the list includes tags that are already assigned to the resource.
learn-more
Learn more
Tagging Amazon Web Services Resources in the Amazon Web Services General Reference
Amazon Web Services Tagging Strategies
related-actions
Related actions
Removes a tag assigned to a Amazon GameLift resource.
You can use resource tags to organize Amazon Web Services resources for a range of purposes. This operation handles the permissions necessary to manage tags for Amazon GameLift resources that support tagging.
To remove a tag from a resource, specify the unique ARN value for the resource and provide a string list containing one or more tags to remove. This operation succeeds even if the list includes tags that aren't assigned to the resource.
learn-more
Learn more
Tagging Amazon Web Services Resources in the Amazon Web Services General Reference
Amazon Web Services Tagging Strategies
related-actions
Related actions
Updates properties for an alias.
Specify the unique identifier of the alias to be updated and the new property values. When reassigning an alias to a new fleet, provide an updated routing strategy. If successful, the updated alias record is returned.
related-actions
Related actions
Updates metadata in a build resource, including the build name and version.
To update the metadata, specify the build ID to update and provide the new values. If successful, a build object containing the updated metadata is returned.
learn-more
Learn more
Updates the properties of a managed container fleet.
Depending on the properties being
updated, this operation might initiate a fleet deployment. You can track
deployments for
a fleet using DescribeFleetDeployment
.
request-options
Request options
As with CreateContainerFleet, many fleet properties use common defaults or are calculated based on the fleet's container group definitions.
* Update fleet properties that result in a fleet deployment. Include only those properties that you want to change. Specify deployment configuration settings.
* Update fleet properties that don't result in a fleet deployment. Include only those properties that you want to change.
Changes to the following properties initiate a fleet deployment:
*
GameServerContainerGroupDefinition
*
PerInstanceContainerGroupDefinition
*
GameServerContainerGroupsPerInstance
*
InstanceInboundPermissions
*
InstanceConnectionPortRange
*
LogConfiguration
results
Results
If successful, this operation updates the container fleet resource, and might
initiate
a new deployment of fleet resources using the deployment configuration provided.
A
deployment replaces existing fleet instances with new instances that are
deployed with
the updated fleet properties. The fleet is placed in UPDATING
status until
the deployment is complete, then return to ACTIVE
.
You can have only one update deployment active at a time for a fleet. If a second update request initiates a deployment while another deployment is in progress, the first deployment is cancelled.
Updates properties in an existing container group definition.
This operation doesn't replace the definition. Instead, it creates a new version of the definition and saves it separately. You can access all versions that you choose to retain.
The only property you can't update is the container group type.
request-options
Request options:
* Update based on the latest version of the container group definition. Specify the container group definition name only, or use an ARN value without a version number. Provide updated values for the properties that you want to change only. All other values remain the same as the latest version.
* Update based on a specific version of the container group definition. Specify the container group definition name and a source version number, or use an ARN value with a version number. Provide updated values for the properties that you want to change only. All other values remain the same as the source version.
* Change a game server container definition. Provide the updated container definition.
* Add or change a support container definition. Provide a complete set of container definitions, including the updated definition.
* Remove a support container definition. Provide a complete set of container definitions, excluding the definition to remove. If the container group has only one support container definition, provide an empty set.
results
Results:
If successful, this operation returns the complete properties of the new container group definition version.
If the container group definition version is used in an active fleets, the
update
automatically initiates a new fleet deployment of the new version. You can track
a fleet's
deployments using ListFleetDeployments
.
Updates a fleet's mutable attributes, such as game session protection and resource creation limits.
To update fleet attributes, specify the fleet ID and the property values that you want to change. If successful, Amazon GameLift returns the identifiers for the updated fleet.
learn-more
Learn more
Updates capacity settings for a managed EC2 fleet or managed container fleet.
For these fleets, you adjust capacity by changing the number of instances in the fleet. Fleet capacity determines the number of game sessions and players that the fleet can host based on its configuration. For fleets with multiple locations, use this operation to manage capacity settings in each location individually.
Use this operation to set these fleet capacity properties:
* Minimum/maximum size: Set hard limits on the number of Amazon EC2 instances allowed. If Amazon GameLift receives a request--either through manual update or automatic scaling--it won't change the capacity to a value outside of this range.
* Desired capacity: As an alternative to automatic scaling, manually set the number of Amazon EC2 instances to be maintained. Before changing a fleet's desired capacity, check the maximum capacity of the fleet's Amazon EC2 instance type by calling DescribeEC2InstanceLimits.
To update capacity for a fleet's home Region, or if the fleet has no remote
locations, omit the Location
parameter. The fleet must be in
ACTIVE
status.
To update capacity for a fleet's remote location, set the
Location
parameter to the location to update. The location must be in
ACTIVE
status.
If successful, Amazon GameLift updates the capacity settings and returns the
identifiers for
the updated fleet and/or location. If a requested change to desired capacity
exceeds the
instance type's limit, the LimitExceeded
exception occurs.
Updates often prompt an immediate change in fleet capacity, such as when current capacity is different than the new desired capacity or outside the new limits. In this scenario, Amazon GameLift automatically initiates steps to add or remove instances in the fleet location. You can track a fleet's current capacity by calling DescribeFleetCapacity or DescribeFleetLocationCapacity.
learn-more
Learn more
Updates permissions that allow inbound traffic to connect to game sessions in the fleet.
To update settings, specify the fleet ID to be updated and specify the changes
to be
made. List the permissions you want to add in
InboundPermissionAuthorizations
, and permissions you want to remove in
InboundPermissionRevocations
. Permissions to be removed must match
existing fleet permissions.
For a container fleet, inbound permissions must specify port numbers that are defined in the fleet's connection port settings.
If successful, the fleet ID for the updated fleet is returned. For fleets with
remote
locations, port setting updates can take time to propagate across all locations.
You can
check the status of updates in each location by calling
DescribeFleetPortSettings
with a location name.
learn-more
Learn more
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Updates information about a registered game server to help Amazon GameLift FleetIQ track game server availability.
This operation is called by a game server process that is running on an instance in a game server group.
Use this operation to update the following types of game server information. You can make all three types of updates in the same request:
*
To update the game server's utilization status from AVAILABLE
(when the game server is available to be claimed) to UTILIZED
(when
the game server is currently hosting games). Identify the game server and game
server group and specify the new utilization status. You can't change the status
from to UTILIZED
to AVAILABLE
.
*
To report health status, identify the game server and game server group and
set health check to HEALTHY
. If a game server does not report
health status for a certain length of time, the game server is no longer
considered healthy. As a result, it will be eventually deregistered from the
game server group to avoid affecting utilization metrics. The best practice is
to report health every 60 seconds.
* To change game server metadata, provide updated game server data.
Once a game server is successfully updated, the relevant statuses and timestamps are updated.
learn-more
Learn more
this-operation-is-used-with-the-amazon-gamelift-fleetiq-solution-and-game
This operation is used with the Amazon GameLift FleetIQ solution and game
server groups.
Updates Amazon GameLift FleetIQ-specific properties for a game server group.
Many Auto Scaling group properties are updated on the Auto Scaling group directly, including the launch template, Auto Scaling policies, and maximum/minimum/desired instance counts.
To update the game server group, specify the game server group ID and provide
the
updated values. Before applying the updates, the new values are validated to
ensure that
Amazon GameLift FleetIQ can continue to perform instance balancing activity. If
successful, a
GameServerGroup
object is returned.
learn-more
Learn more
Updates the mutable properties of a game session.
To update a game session, specify the game session ID and the values you want to change.
If successful, the updated GameSession
object is returned.
Updates the configuration of a game session queue, which determines how the queue processes new game session requests.
To update settings, specify the queue name to be updated and provide the new settings. When updating destinations, provide a complete list of destinations.
learn-more
Learn more
Updates settings for a FlexMatch matchmaking configuration.
These changes affect all matches and game sessions that are created after the update. To update settings, specify the configuration name to be updated and provide the new settings.
learn-more
Learn more
Updates the runtime configuration for the specified fleet.
The runtime configuration
tells Amazon GameLift how to launch server processes on computes in managed EC2
and Anywhere fleets. You
can update a fleet's runtime configuration at any time after the fleet is
created; it
does not need to be in ACTIVE
status.
To update runtime configuration, specify the fleet ID and provide a
RuntimeConfiguration
with an updated set of server process
configurations.
If successful, the fleet's runtime configuration settings are updated. Fleet computes that run game server processes regularly check for and receive updated runtime configurations. The computes immediately take action to comply with the new configuration by launching new server processes or by not replacing existing processes when they shut down. Updating a fleet's runtime configuration never affects existing server processes.
learn-more
Learn more
Updates Realtime script metadata and content.
To update script metadata, specify the script ID and provide updated name and/or version values.
To update script content, provide an updated zip file by pointing to either a local file or an Amazon S3 bucket location. You can use either method regardless of how the original script was uploaded. Use the Version parameter to track updates to the script.
If the call is successful, the updated metadata is stored in the script record and a revised script is uploaded to the Amazon GameLift service. Once the script is updated and acquired by a fleet instance, the new version is used for all new game sessions.
learn-more
Learn more
Amazon GameLift Realtime Servers
related-actions
Related actions
Validates the syntax of a matchmaking rule or rule set.
This operation checks that the rule set is using syntactically correct JSON and that it conforms to allowed property expressions. To validate syntax, provide a rule set JSON string.
learn-more
Learn more
*