View Source Scholar.Impute.SimpleImputer (Scholar v0.3.1)
Univariate imputer for completing missing values with simple strategies.
Summary
Functions
Univariate imputer for completing missing values with simple strategies.
Impute all missing values in x
using fitted imputer.
Functions
Univariate imputer for completing missing values with simple strategies.
Options
:missing_values
- The placeholder for the missing values. All occurrences of:missing_values
will be imputed. The default value is:nan
.:strategy
- The imputation strategy.:mean
- replace missing values using the mean along each column.:median
- replace missing values using the median along each column.:mode
- replace missing using the most frequent value along each column. If there is more than one such value, only the smallest is returned.:constant
- replace missing values with:fill_value
.
The default value is
:mean
.:fill_value
- When strategy is set to:constant
,:fill_value
is used to replace all occurrences of:missing_values
. The default value is0.0
.
Return Values
The function returns a struct with the following parameters:
:missing_values
- the same value as in:missing_values
:statistics
- The imputation fill value for each feature. Computing statistics can result inNx.Constant.nan/0
values.
Examples
iex> x = Nx.tensor([[1, 2, :nan], [3, 7, :nan], [:nan, 4, 5]])
iex> Scholar.Impute.SimpleImputer.fit(x, strategy: :mean)
%Scholar.Impute.SimpleImputer{
statistics: Nx.tensor(
[2.0, 4.333333492279053, 5.0]
),
missing_values: :nan
}
Impute all missing values in x
using fitted imputer.
Return Values
The function returns input tensor with NaN replaced with values saved in fitted imputer.
Examples
iex> x = Nx.tensor([[1, 2, :nan], [3, 7, :nan], [:nan, 4, 5]])
iex> imputer = Scholar.Impute.SimpleImputer.fit(x, strategy: :mean)
iex> Scholar.Impute.SimpleImputer.transform(imputer, x)
Nx.tensor(
[
[1.0, 2.0, 5.0],
[3.0, 7.0, 5.0],
[2.0, 4.0, 5.0]
]
)
iex> x = Nx.tensor([[1, 2, :nan], [3, 7, :nan], [:nan, 4, 5]])
iex> y = Nx.tensor([[7, :nan, 6], [6, 9, :nan], [8, :nan, 1]])
iex> imputer = Scholar.Impute.SimpleImputer.fit(x, strategy: :median)
iex> Scholar.Impute.SimpleImputer.transform(imputer, y)
Nx.tensor(
[
[7.0, 4.0, 6.0],
[6.0, 9.0, 5.0],
[8.0, 4.0, 1.0]
]
)