View Source Scholar.Linear.LinearRegression (Scholar v0.3.1)
Ordinary least squares linear regression.
Time complexity of linear regression is $O((K^2) * (K+N))$ where $N$ is the number of samples and $K$ is the number of features.
Summary
Functions
Fits a linear regression model for sample inputs x
and
sample targets y
.
Makes predictions with the given model
on input x
.
Functions
Fits a linear regression model for sample inputs x
and
sample targets y
.
Options
:sample_weights
- The weights for each observation. If not provided, all observations are assigned equal weight.:fit_intercept?
(boolean/0
) - If set totrue
, a model will fit the intercept. Otherwise, the intercept is set to0.0
. The intercept is an independent term in a linear model. Specifically, it is the expected mean value of targets for a zero-vector on input. The default value istrue
.
Return Values
The function returns a struct with the following parameters:
:coefficients
- Estimated coefficients for the linear regression problem.:intercept
- Independent term in the linear model.
Examples
iex> x = Nx.tensor([[1.0, 2.0], [3.0, 2.0], [4.0, 7.0]])
iex> y = Nx.tensor([4.0, 3.0, -1.0])
iex> model = Scholar.Linear.LinearRegression.fit(x, y)
iex> model.coefficients
#Nx.Tensor<
f32[2]
[-0.49724647402763367, -0.7010394930839539]
>
iex> model.intercept
#Nx.Tensor<
f32
5.8964691162109375
>
Makes predictions with the given model
on input x
.
Examples
iex> x = Nx.tensor([[1.0, 2.0], [3.0, 2.0], [4.0, 7.0]])
iex> y = Nx.tensor([4.0, 3.0, -1.0])
iex> model = Scholar.Linear.LinearRegression.fit(x, y)
iex> Scholar.Linear.LinearRegression.predict(model, Nx.tensor([[2.0, 1.0]]))
Nx.tensor(
[4.200936794281006]
)