View Source Scholar.Preprocessing (Scholar v0.3.1)
Set of functions for preprocessing data.
Summary
Functions
Converts a tensor into binary values based on the given threshold.
Scales a tensor by dividing each sample in batch by maximum absolute value in the batch.
Scales a tensor by a given range.
Normalize samples individually to unit norm.
It is a shortcut for Scholar.Preprocessing.OneHotEncoder.fit_transform/2
.
See Scholar.Preprocessing.OneHotEncoder
for more information.
It is a shortcut for Scholar.Preprocessing.OrdinalEncoder.fit_transform/2
.
See Scholar.Preprocessing.OrdinalEncoder
for more information.
Standardizes the tensor by removing the mean and scaling to unit variance.
Functions
Converts a tensor into binary values based on the given threshold.
Options
:type
- Type of the resultant tensor. The default value is:f32
.:threshold
- Feature values below or equal to this are replaced by 0, above it by 1. The default value is0
.
Examples
iex> Scholar.Preprocessing.binarize(Nx.tensor([[1.0, -1.0, 2.0], [2.0, 0.0, 0.0], [0.0, 1.0, -1.0]]))
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 1.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0]
]
>
iex> Scholar.Preprocessing.binarize(Nx.tensor([[1.0, -1.0, 2.0], [2.0, 0.0, 0.0], [0.0, 1.0, -1.0]]), threshold: 1.3, type: {:u, 8})
#Nx.Tensor<
u8[3][3]
[
[0, 0, 1],
[1, 0, 0],
[0, 0, 0]
]
>
Scales a tensor by dividing each sample in batch by maximum absolute value in the batch.
It is a shortcut for Scholar.Preprocessing.MaxAbsScaler.fit_transform/2
.
See Scholar.Preprocessing.MaxAbsScaler
for more information.
Examples
iex> Scholar.Preprocessing.max_abs_scale(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
f32[3]
[0.3333333432674408, 0.6666666865348816, 1.0]
>
iex> Scholar.Preprocessing.max_abs_scale(Nx.tensor([[1, -1, 2], [3, 0, 0], [0, 1, -1], [2, 3, 1]]), axes: [0])
#Nx.Tensor<
f32[4][3]
[
[0.3333333432674408, -0.3333333432674408, 1.0],
[1.0, 0.0, 0.0],
[0.0, 0.3333333432674408, -0.5],
[0.6666666865348816, 1.0, 0.5]
]
>
iex> Scholar.Preprocessing.max_abs_scale(42)
#Nx.Tensor<
f32
1.0
>
Scales a tensor by a given range.
It is a shortcut for Scholar.Preprocessing.MinMaxScaler.fit_transform/2
.
See Scholar.Preprocessing.MinMaxScaler
for more information.
Examples
iex> Scholar.Preprocessing.min_max_scale(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
f32[3]
[0.0, 0.5, 1.0]
>
iex> Scholar.Preprocessing.min_max_scale(42)
#Nx.Tensor<
f32
0.0
>
Normalize samples individually to unit norm.
The zero-tensors cannot be normalized and they stay the same after normalization.
It is a shortcut for Scholar.Preprocessing.Normalizer.fit_transform/2
.
See Scholar.Preprocessing.Normalizer
for more information.
Examples
iex> Scholar.Preprocessing.normalize(Nx.tensor([[0, 0, 0], [3, 4, 5], [-2, 4, 3]]), axes: [1])
#Nx.Tensor<
f32[3][3]
[
[0.0, 0.0, 0.0],
[0.4242640733718872, 0.5656854510307312, 0.7071067690849304],
[-0.3713906705379486, 0.7427813410758972, 0.5570860505104065]
]
>
iex> Scholar.Preprocessing.normalize(Nx.tensor([[0, 0, 0], [3, 4, 5], [-2, 4, 3]]))
#Nx.Tensor<
f32[3][3]
[
[0.0, 0.0, 0.0],
[0.3375263810157776, 0.4500351846218109, 0.5625439882278442],
[-0.22501759231090546, 0.4500351846218109, 0.3375263810157776]
]
>
It is a shortcut for Scholar.Preprocessing.OneHotEncoder.fit_transform/2
.
See Scholar.Preprocessing.OneHotEncoder
for more information.
Examples
iex> Scholar.Preprocessing.one_hot_encode(Nx.tensor([2, 0, 3, 2, 1, 1, 0]), num_classes: 4)
#Nx.Tensor<
u8[7][4]
[
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[1, 0, 0, 0]
]
>
It is a shortcut for Scholar.Preprocessing.OrdinalEncoder.fit_transform/2
.
See Scholar.Preprocessing.OrdinalEncoder
for more information.
Examples
iex> Scholar.Preprocessing.ordinal_encode(Nx.tensor([3, 2, 4, 56, 2, 4, 2]), num_classes: 4)
#Nx.Tensor<
s64[7]
[1, 0, 2, 3, 0, 2, 0]
>
Standardizes the tensor by removing the mean and scaling to unit variance.
It is a shortcut for Scholar.Preprocessing.StandardScale.fit_transform/3
.
See Scholar.Preprocessing.StandardScale
for more information.
Examples
iex> Scholar.Preprocessing.standard_scale(Nx.tensor([1,2,3]))
#Nx.Tensor<
f32[3]
[-1.2247447967529297, 0.0, 1.2247447967529297]
>