View Source Scholar.Preprocessing.OrdinalEncoder (Scholar v0.4.0)
Implements encoder that converts integer value (substitute of categorical data in tensors) into other integer value.
The values assigned starts from 0
and go up to num_categories - 1
. They are maintained in sorted manner.
This means that for x < y => encoded_value(x) < encoded_value(y).
Currently the module supports only 1D tensors.
Summary
Functions
Fit the ordinal encoder to provided data. The labels are assigned in a sorted manner.
Apply encoding on the provided tensor directly. It's equivalent to fit/2
and then transform/2
on the same data.
Decodes tensor elements into original categories seen during fitting.
Encodes tensor elements into integers from range 0 to :num_categories - 1
or -1 if the value did not occur in fitting process.
Functions
Fit the ordinal encoder to provided data. The labels are assigned in a sorted manner.
Options
:num_categories
(pos_integer/0
) - Required. The number of categories to be encoded.
Examples
iex> tensor = Nx.tensor([3, 2, 4, 56, 2, 4, 2])
iex> Scholar.Preprocessing.OrdinalEncoder.fit(tensor, num_categories: 4)
%Scholar.Preprocessing.OrdinalEncoder{
categories: Nx.tensor([2, 3, 4, 56])
}
Apply encoding on the provided tensor directly. It's equivalent to fit/2
and then transform/2
on the same data.
Examples
iex> tensor = Nx.tensor([3, 2, 4, 56, 2, 4, 2])
iex> Scholar.Preprocessing.OrdinalEncoder.fit_transform(tensor)
#Nx.Tensor<
u64[7]
[1, 0, 2, 3, 0, 2, 0]
>
Decodes tensor elements into original categories seen during fitting.
Examples
iex> tensor = Nx.tensor([3, 2, 4, 56, 2, 4, 2]) iex> encoder = Scholar.Preprocessing.OrdinalEncoder.fit(tensor, num_categories: 4) iex> encoded = Nx.tensor([1, 0, 2, 3, 1, 0, 2]) iex> Scholar.Preprocessing.OrdinalEncoder.inverse_transform(encoder, encoded) Nx.tensor([3, 2, 4, 56, 3, 2, 4])
Encodes tensor elements into integers from range 0 to :num_categories - 1
or -1 if the value did not occur in fitting process.
Examples
iex> tensor = Nx.tensor([3, 2, 4, 56, 2, 4, 2])
iex> encoder = Scholar.Preprocessing.OrdinalEncoder.fit(tensor, num_categories: 4)
iex> Scholar.Preprocessing.OrdinalEncoder.transform(encoder, tensor)
#Nx.Tensor<
s32[7]
[1, 0, 2, 3, 0, 2, 0]
>
iex> tensor = Nx.tensor([3, 2, 4, 56, 2, 4, 2])
iex> encoder = Scholar.Preprocessing.OrdinalEncoder.fit(tensor, num_categories: 4)
iex> new_tensor = Nx.tensor([2, 3, 4, 5, 4, 56, 2])
iex> Scholar.Preprocessing.OrdinalEncoder.transform(encoder, new_tensor)
#Nx.Tensor<
s32[7]
[0, 1, 2, -1, 2, 3, 0]
>