View Source Scholar.Stats (Scholar v0.3.1)

Statistical functions

All of the functions in this module are implemented as numerical functions and can be JIT or AOT compiled with any supported Nx compiler.

Summary

Functions

Computes correlation matrix for sample inputs x.

Computes the kurtosis (Fisher or Pearson) of a dataset.

Calculates the nth moment about the mean for a sample.

Computes the sample skewness of a data set.

Functions

Computes correlation matrix for sample inputs x.

The value on the position $Corr_{ij}$ in the $Corr$ matrix is calculated using the formula: $$ Corr(X\_i, X\_j) = \frac{Cov(X\_i, X\_j)}{\sqrt{Cov(X\_i, X\_i)Cov(X\_j, X\_j)}} $$ Where:

  • $X_i$ is a $i$th row of input

  • $Cov(X\_i, X\_j)$ is covariance between features $X_i$ and $X_j$

Time complexity of correlation estimation is $O(N * K^2)$ where $N$ is the number of samples and $K$ is the number of features.

Example

iex> Scholar.Stats.correlation_matrix(Nx.tensor([[3, 6, 5], [26, 75, 3], [23, 4, 1]]))
#Nx.Tensor<
  f32[3][3]
  [
    [1.0, 0.580316960811615, -0.7997867465019226],
    [0.580316960811615, 1.0, 0.024736011400818825],
    [-0.7997867465019226, 0.024736011400818825, 1.0]
  ]
>

iex> Scholar.Stats.correlation_matrix(Nx.tensor([[3, 6], [2, 3], [7, 9], [5, 3]]))
#Nx.Tensor<
  f32[2][2]
  [
    [1.0, 0.6673083305358887],
    [0.6673083305358887, 1.0]
  ]
>

iex> x = Nx.tensor([[3, 6, 5], [26, 75, 3], [23, 4, 1]])
iex> means = Nx.mean(x, axes: [-2])
iex> Scholar.Stats.correlation_matrix(x, means)
#Nx.Tensor<
  f32[3][3]
  [
    [1.0, 0.580316960811615, -0.7997867465019226],
    [0.580316960811615, 1.0, 0.024736011400818825],
    [-0.7997867465019226, 0.024736011400818825, 1.0]
  ]
>
Link to this function

correlation_matrix(x, means)

View Source
Link to this function

kurtosis(tensor, opts \\ [])

View Source

Computes the kurtosis (Fisher or Pearson) of a dataset.

Options

  • :axes - Axes to calculate the operation. If set to nil then the operation is performed on the whole tensor. The default value is [0].

  • :keep_axes (boolean/0) - If set to true, the axes which are reduced are left. The default value is false.

  • :bias (boolean/0) - If false, then the calculations are corrected for statistical bias. The default value is true.

  • :variant - If :fisher then Fisher's definition is used, if :pearson then Pearson's definition is used. The default value is :fisher.

Examples

iex> x = Nx.tensor([[3, 5, 3], [2, 6, 1], [9, 3, 2], [1, 6, 8]])
iex> Scholar.Stats.kurtosis(x)
#Nx.Tensor<
  f32[3]
  [-0.7980852127075195, -1.0, -0.8394768238067627]
>
Link to this function

moment(tensor, moment, opts \\ [])

View Source

Calculates the nth moment about the mean for a sample.

Options

  • :axes - Axes to calculate the operation. If set to nil then the operation is performed on the whole tensor. The default value is [0].

  • :keep_axes (boolean/0) - If set to true, the axes which are reduced are left. The default value is false.

Examples

iex> x = Nx.tensor([[3, 5, 3], [2, 6, 1], [9, 3, 2], [1, 6, 8]])
iex> Scholar.Stats.moment(x, 2)
#Nx.Tensor<
  f32[3]
  [9.6875, 1.5, 7.25]
>
Link to this function

skew(tensor, opts \\ [])

View Source

Computes the sample skewness of a data set.

Options

  • :axes - Axes to calculate the operation. If set to nil then the operation is performed on the whole tensor. The default value is [0].

  • :keep_axes (boolean/0) - If set to true, the axes which are reduced are left. The default value is false.

  • :bias (boolean/0) - If false, then the calculations are corrected for statistical bias. The default value is true.

Examples

iex> x = Nx.tensor([[3, 5, 3], [2, 6, 1], [9, 3, 2], [1, 6, 8]])
iex> Scholar.Stats.skew(x)
#Nx.Tensor<
  f32[3]
  [0.9794093370437622, -0.8164965510368347, 0.9220733642578125]
>