View Source Scholar.Linear.LogisticRegression (Scholar v0.4.0)
Logistic regression in both binary and multinomial variants.
Time complexity is where is the number of samples, is the number of features, and is the number of iterations.
Summary
Functions
Fits a logistic regression model for sample inputs x
and sample
targets y
.
Makes predictions with the given model
on inputs x
.
Calculates probabilities of predictions with the given model
on inputs x
.
Functions
Fits a logistic regression model for sample inputs x
and sample
targets y
.
Depending on number of classes the function chooses either binary or multinomial logistic regression.
Options
:num_classes
(pos_integer/0
) - Required. number of classes contained in the input tensors.:iterations
(pos_integer/0
) - number of iterations of gradient descent performed inside logistic regression. The default value is1000
.:learning_loop_unroll
(boolean/0
) - Iftrue
, the learning loop is unrolled. The default value isfalse
.:optimizer
- The optimizer name or {init, update} pair of functions (seePolaris.Optimizers
for more details). The default value is:sgd
.:eps
(float/0
) - The convergence tolerance. If theabs(loss) < size(x) * :eps
, the algorithm is considered to have converged. The default value is1.0e-8
.
Return Values
The function returns a struct with the following parameters:
:coefficients
- Coefficient of the features in the decision function.:bias
- Bias added to the decision function.:mode
- Indicates whether the problem is binary classification (:num_classes
set to 2) or multinomial (:num_classes
is bigger than 2). For binary classification set to:binary
, otherwise set to:multinomial
.
Examples
iex> x = Nx.tensor([[1.0, 2.0], [3.0, 2.0], [4.0, 7.0]])
iex> y = Nx.tensor([1, 0, 1])
iex> Scholar.Linear.LogisticRegression.fit(x, y, num_classes: 2)
%Scholar.Linear.LogisticRegression{
coefficients: Nx.tensor(
[
[2.5531527996063232, -0.5531544089317322],
[-0.35652396082878113, 2.3565237522125244]
]
),
bias: Nx.tensor(
[-0.28847914934158325, 0.28847917914390564]
)
}
Makes predictions with the given model
on inputs x
.
Output predictions have shape {n_samples}
when train target is shaped either {n_samples}
or {n_samples, 1}
.
Examples
iex> x = Nx.tensor([[1.0, 2.0], [3.0, 2.0], [4.0, 7.0]])
iex> y = Nx.tensor([1, 0, 1])
iex> model = Scholar.Linear.LogisticRegression.fit(x, y, num_classes: 2)
iex> Scholar.Linear.LogisticRegression.predict(model, Nx.tensor([[-3.0, 5.0]]))
#Nx.Tensor<
s32[1]
[1]
>
Calculates probabilities of predictions with the given model
on inputs x
.
Examples
iex> x = Nx.tensor([[1.0, 2.0], [3.0, 2.0], [4.0, 7.0]])
iex> y = Nx.tensor([1, 0, 1])
iex> model = Scholar.Linear.LogisticRegression.fit(x, y, num_classes: 2)
iex> Scholar.Linear.LogisticRegression.predict_probability(model, Nx.tensor([[-3.0, 5.0]]))
#Nx.Tensor<
f32[1][2]
[
[6.470913388456623e-11, 1.0]
]
>