View Source Scholar.Linear.LogisticRegression (Scholar v0.3.1)
Logistic regression in both binary and multinomial variants.
Time complexity is $O(N * K * I)$ where $N$ is the number of samples, $K$ is the number of features, and $I$ is the number of iterations.
Summary
Functions
Fits a logistic regression model for sample inputs x
and sample
targets y
.
Makes predictions with the given model
on inputs x
.
Calculates probabilities of predictions with the given model
on inputs x
.
Functions
Fits a logistic regression model for sample inputs x
and sample
targets y
.
Depending on number of classes the function chooses either binary or multinomial logistic regression.
Options
:num_classes
(pos_integer/0
) - Required. number of classes contained in the input tensors.:iterations
(pos_integer/0
) - number of iterations of gradient descent performed inside logistic regression. The default value is1000
.:learning_loop_unroll
(boolean/0
) - Iftrue
, the learning loop is unrolled. The default value isfalse
.:optimizer
- The optimizer name or {init, update} pair of functions (seePolaris.Optimizers
for more details). The default value is:sgd
.:eps
(float/0
) - The convergence tolerance. If theabs(loss) < size(x) * :eps
, the algorithm is considered to have converged. The default value is1.0e-8
.
Return Values
The function returns a struct with the following parameters:
:coefficients
- Coefficient of the features in the decision function.:bias
- Bias added to the decision function.:mode
- Indicates whether the problem is binary classification (:num_classes
set to 2) or multinomial (:num_classes
is bigger than 2). For binary classification set to:binary
, otherwise set to:multinomial
.
Examples
iex> x = Nx.tensor([[1.0, 2.0], [3.0, 2.0], [4.0, 7.0]])
iex> y = Nx.tensor([1, 0, 1])
iex> Scholar.Linear.LogisticRegression.fit(x, y, num_classes: 2)
%Scholar.Linear.LogisticRegression{
coefficients: Nx.tensor(
[
[2.5531527996063232, -0.5531544089317322],
[-0.35652396082878113, 2.3565237522125244]
]
),
bias: Nx.tensor(
[-0.28847914934158325, 0.28847917914390564]
)
}
Makes predictions with the given model
on inputs x
.
Examples
iex> x = Nx.tensor([[1.0, 2.0], [3.0, 2.0], [4.0, 7.0]])
iex> y = Nx.tensor([1, 0, 1])
iex> model = Scholar.Linear.LogisticRegression.fit(x, y, num_classes: 2)
iex> Scholar.Linear.LogisticRegression.predict(model, Nx.tensor([[-3.0, 5.0]]))
#Nx.Tensor<
s64[1]
[1]
>
Calculates probabilities of predictions with the given model
on inputs x
.
Examples
iex> x = Nx.tensor([[1.0, 2.0], [3.0, 2.0], [4.0, 7.0]])
iex> y = Nx.tensor([1, 0, 1])
iex> model = Scholar.Linear.LogisticRegression.fit(x, y, num_classes: 2)
iex> Scholar.Linear.LogisticRegression.predict_probability(model, Nx.tensor([[-3.0, 5.0]]))
#Nx.Tensor<
f32[1][2]
[
[6.470913388456623e-11, 1.0]
]
>