View Source Scholar.Preprocessing.MaxAbsScaler (Scholar v0.3.1)

Scales a tensor by dividing each sample in batch by maximum absolute value in the batch

Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Maximum absolute value then is stored to be used on new samples.

Summary

Functions

Compute the maximum absolute value of samples to be used for later scaling.

Standardizes the tensor by removing the mean and scaling to unit variance.

Performs the standardization of the tensor using a fitted scaler.

Functions

Compute the maximum absolute value of samples to be used for later scaling.

Options

  • :axes - Axes to calculate the max absolute value over. By default the absolute values are calculated between the whole tensors.

Return values

Returns a struct with the following parameters:

  • max_abs: the calculated maximum absolute value of samples.

Examples

iex> t = Nx.tensor([[1, -1, 2], [2, 0, 0], [0, 1, -1]])
iex> Scholar.Preprocessing.MaxAbsScaler.fit(t)
%Scholar.Preprocessing.MaxAbsScaler{
  max_abs: Nx.tensor(
    [
      [2]
    ]
  )
}
Link to this function

fit_transform(tensor, opts \\ [])

View Source

Standardizes the tensor by removing the mean and scaling to unit variance.

Examples

iex> t = Nx.tensor([[1, -1, 2], [2, 0, 0], [0, 1, -1]])
iex> Scholar.Preprocessing.MaxAbsScaler.fit_transform(t)
#Nx.Tensor<
  f32[3][3]
  [
    [0.5, -0.5, 1.0],
    [1.0, 0.0, 0.0],
    [0.0, 0.5, -0.5]
  ]
>

Performs the standardization of the tensor using a fitted scaler.

Examples

iex> t = Nx.tensor([[1, -1, 2], [2, 0, 0], [0, 1, -1]])
iex> scaler = Scholar.Preprocessing.MaxAbsScaler.fit(t)
iex> Scholar.Preprocessing.MaxAbsScaler.transform(scaler, t)
#Nx.Tensor<
  f32[3][3]
  [
    [0.5, -0.5, 1.0],
    [1.0, 0.0, 0.0],
    [0.0, 0.5, -0.5]
  ]
>
iex> t = Nx.tensor([[1, -1, 2], [2, 0, 0], [0, 1, -1]])
iex> scaler = Scholar.Preprocessing.MaxAbsScaler.fit(t)
iex> new_tensor = Nx.tensor([[0.5, 1, -1], [0.3, 0.8, -1.6]])
iex> Scholar.Preprocessing.MaxAbsScaler.transform(scaler, new_tensor)
#Nx.Tensor<
  f32[2][3]
  [
    [0.25, 0.5, -0.5],
    [0.15000000596046448, 0.4000000059604645, -0.800000011920929]
  ]
>