View Source Scholar.NaiveBayes.Complement (Scholar v0.3.1)
The Complement Naive Bayes classifier.
It was designed to correct the assumption of Multinomial Naive Bayes that each class has roughly the same representation. It is particularly suited for imbalanced data sets.
Time complexity is $O(K * N * C)$ where $N$ is the number of samples and $K$ is the number of features, and $C$ is the number of classes.
Reference:
Summary
Functions
The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification)
Perform classification on an array of test vectors x
using model
.
Return joint log probability estimates for the test vector x
using model
.
Return log-probability estimates for the test vector x
using model
.
Return probability estimates for the test vector x
using model
.
Functions
The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification)
Options
:alpha
- Additive (Laplace/Lidstone) smoothing parameter (set alpha to 0.0 and force_alpha to true, for no smoothing). The default value is1.0
.:force_alpha
(boolean/0
) - If False and alpha is less than 1e-10, it will set alpha to 1e-10. If True, alpha will remain unchanged. This may cause numerical errors if alpha is too close to 0. The default value istrue
.:fit_priors
(boolean/0
) - Whether to learn class prior probabilities or not. If false, a uniform prior will be used. The default value istrue
.:priors
- Prior probabilities of the classes. If specified, the priors are not adjusted according to the data.:num_classes
(pos_integer/0
) - Required. Number of different classes used in training.:sample_weights
- List ofn_samples
elements. A list of 1.0 values is used if none is given.:norm
(boolean/0
) - Whether or not a second normalization of the weights is performed. The default value isfalse
.
Return Values
The function returns a struct with the following parameters:
:feature_log_probability
- Empirical log probability of features given a class,P(x_i|y)
.:class_count
- Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided.:class_log_priors
- Smoothed empirical log probability for each class.:classes
- class labels known to the classifier.:feature_count
- Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided.:feature_all
- Number of samples encountered for each feature during fitting. This value is weighted by thesample_weights
when provided.
Examples
iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
%Scholar.NaiveBayes.Complement{
feature_log_probability: Nx.tensor(
[
[1.3062516450881958, 1.0986123085021973, 0.9267619848251343],
[1.2452157735824585, 1.0986123085021973, 0.9707789421081543],
[1.3499267101287842, 1.0986123085021973, 0.8979415893554688]
]
),
class_count: Nx.tensor([1.0, 1.0, 2.0]),
class_log_priors: Nx.tensor([-1.3862943649291992, -1.3862943649291992, -0.6931471824645996]),
classes: Nx.tensor([0, 1, 2]),
feature_count: Nx.tensor(
[
[6.0, 7.0, 8.0],
[0.0, 1.0, 2.0],
[12.0, 14.0, 16.0]
]
),
feature_all: Nx.tensor([18.0, 22.0, 26.0])
}
iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3, sample_weights: [1, 6, 2, 3])
%Scholar.NaiveBayes.Complement{
feature_log_probability: Nx.tensor(
[
[1.2953225374221802, 1.0986123085021973, 0.9343092441558838],
[1.2722758054733276, 1.0986123085021973, 0.9506921768188477],
[1.3062516450881958, 1.0986123085021973, 0.9267619848251343]
]
),
class_count: Nx.tensor([2.0, 1.0, 9.0]),
class_log_priors: Nx.tensor([-1.7917594909667969, -2.4849066734313965, -0.28768205642700195]),
classes: Nx.tensor([0, 1, 2]),
feature_count: Nx.tensor(
[
[12.0, 14.0, 16.0],
[0.0, 1.0, 2.0],
[45.0, 54.0, 63.0]
]
),
feature_all: Nx.tensor([57.0, 69.0, 81.0])
}
Perform classification on an array of test vectors x
using model
.
Examples
iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> model = Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
iex> Scholar.NaiveBayes.Complement.predict(model, Nx.tensor([[6, 2, 4], [8, 5, 9]]))
#Nx.Tensor<
s64[2]
[2, 2]
>
Return joint log probability estimates for the test vector x
using model
.
Examples
iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> model = Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
iex> Scholar.NaiveBayes.Complement.predict_joint_log_probability(model, Nx.tensor([[6, 2, 4], [8, 5, 9]]))
#Nx.Tensor<
f32[2][3]
[
[13.741782188415527, 13.551634788513184, 13.888551712036133],
[24.283931732177734, 24.19179916381836, 24.37394905090332]
]
>
Return log-probability estimates for the test vector x
using model
.
Examples
iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> model = Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
iex> Scholar.NaiveBayes.Complement.predict_log_probability(model, Nx.tensor([[6, 2, 4], [8, 5, 9]]))
#Nx.Tensor<
f32[2][3]
[
[-1.0935745239257812, -1.283721923828125, -0.9468050003051758],
[-1.1006698608398438, -1.1928024291992188, -1.0106525421142578]
]
>
Return probability estimates for the test vector x
using model
.
Examples
iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> model = Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
iex> Scholar.NaiveBayes.Complement.predict_probability(model, Nx.tensor([[6, 2, 4], [8, 5, 9]]))
#Nx.Tensor<
f32[2][3]
[
[0.33501681685447693, 0.2770043909549713, 0.3879786431789398],
[0.3326481878757477, 0.3033699095249176, 0.3639813959598541]
]
>