View Source Scholar.NaiveBayes.Complement (Scholar v0.4.0)

The Complement Naive Bayes classifier.

It was designed to correct the assumption of Multinomial Naive Bayes that each class has roughly the same representation. It is particularly suited for imbalanced data sets.

Time complexity is O(KNC)O(K * N * C) where NN is the number of samples and KK is the number of features, and CC is the number of classes.

Reference:

Summary

Functions

Fits a complement naive Bayes classifier. The function assumes that the targets y are integers between 0 and num_classes - 1 (inclusive). Otherwise, those samples will not contribute to class_count.

Perform classification on an array of test vectors x using model.

Return joint log probability estimates for the test vector x using model.

Return log-probability estimates for the test vector x using model.

Return probability estimates for the test vector x using model.

Functions

fit(x, y, opts \\ [])

Fits a complement naive Bayes classifier. The function assumes that the targets y are integers between 0 and num_classes - 1 (inclusive). Otherwise, those samples will not contribute to class_count.

Options

  • :alpha - Additive (Laplace/Lidstone) smoothing parameter (set alpha to 0.0 and force_alpha to true, for no smoothing). The default value is 1.0.

  • :force_alpha (boolean/0) - If False and alpha is less than 1e-10, it will set alpha to 1e-10. If True, alpha will remain unchanged. This may cause numerical errors if alpha is too close to 0. The default value is true.

  • :fit_priors (boolean/0) - Whether to learn class prior probabilities or not. If false, a uniform prior will be used. The default value is true.

  • :priors - Prior probabilities of the classes. If specified, the priors are not adjusted according to the data.

  • :num_classes (pos_integer/0) - Required. Number of different classes used in training.

  • :sample_weights - List of n_samples elements. A list of 1.0 values is used if none is given.

  • :norm (boolean/0) - Whether or not a second normalization of the weights is performed. The default value is false.

Return Values

The function returns a struct with the following parameters:

  • :feature_log_probability - Empirical log probability of features given a class, P(x_i|y).

  • :class_count - Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided.

  • :class_log_priors - Smoothed empirical log probability for each class.

  • :classes - class labels known to the classifier.

  • :feature_count - Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided.

  • :feature_all - Number of samples encountered for each feature during fitting. This value is weighted by the sample_weights when provided.

Examples

iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
%Scholar.NaiveBayes.Complement{
  feature_log_probability: Nx.tensor(
    [
      [1.3062516450881958, 1.0986123085021973, 0.9267619848251343],
      [1.2452157735824585, 1.0986123085021973, 0.9707789421081543],
      [1.3499267101287842, 1.0986123085021973, 0.8979415893554688]
    ]
  ),
  class_count: Nx.tensor([1.0, 1.0, 2.0]),
  class_log_priors: Nx.tensor([-1.3862943649291992, -1.3862943649291992, -0.6931471824645996]),
  classes: Nx.tensor([0, 1, 2]),
  feature_count: Nx.tensor(
    [
      [6.0, 7.0, 8.0],
      [0.0, 1.0, 2.0],
      [12.0, 14.0, 16.0]
    ]
  ),
  feature_all: Nx.tensor([18.0, 22.0, 26.0])
}
iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3, sample_weights: [1, 6, 2, 3])
%Scholar.NaiveBayes.Complement{
  feature_log_probability: Nx.tensor(
    [
      [1.2953225374221802, 1.0986123085021973, 0.9343092441558838],
      [1.2722758054733276, 1.0986123085021973, 0.9506921768188477],
      [1.3062516450881958, 1.0986123085021973, 0.9267619848251343]
    ]
  ),
  class_count: Nx.tensor([2.0, 1.0, 9.0]),
  class_log_priors: Nx.tensor([-1.7917594909667969, -2.4849066734313965, -0.28768205642700195]),
  classes: Nx.tensor([0, 1, 2]),
  feature_count: Nx.tensor(
    [
      [12.0, 14.0, 16.0],
      [0.0, 1.0, 2.0],
      [45.0, 54.0, 63.0]
    ]
  ),
  feature_all: Nx.tensor([57.0, 69.0, 81.0])
}

predict(model, x)

Perform classification on an array of test vectors x using model.

Examples

iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> model = Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
iex> Scholar.NaiveBayes.Complement.predict(model, Nx.tensor([[6, 2, 4], [8, 5, 9]]))
#Nx.Tensor<
  s32[2]
  [2, 2]
>

predict_joint_log_probability(model, x)

Return joint log probability estimates for the test vector x using model.

Examples

iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> model = Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
iex> Scholar.NaiveBayes.Complement.predict_joint_log_probability(model, Nx.tensor([[6, 2, 4], [8, 5, 9]]))
#Nx.Tensor<
  f32[2][3]
  [
    [13.741782188415527, 13.551634788513184, 13.888551712036133],
    [24.283931732177734, 24.19179916381836, 24.37394905090332]
  ]
>

predict_log_probability(model, x)

Return log-probability estimates for the test vector x using model.

Examples

iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> model = Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
iex> Scholar.NaiveBayes.Complement.predict_log_probability(model, Nx.tensor([[6, 2, 4], [8, 5, 9]]))
#Nx.Tensor<
  f32[2][3]
  [
    [-1.0935745239257812, -1.283721923828125, -0.9468050003051758],
    [-1.1006698608398438, -1.1928024291992188, -1.0106525421142578]
  ]
>

predict_probability(model, x)

Return probability estimates for the test vector x using model.

Examples

iex> x = Nx.iota({4, 3})
iex> y = Nx.tensor([1, 2, 0, 2])
iex> model = Scholar.NaiveBayes.Complement.fit(x, y, num_classes: 3)
iex> Scholar.NaiveBayes.Complement.predict_probability(model, Nx.tensor([[6, 2, 4], [8, 5, 9]]))
#Nx.Tensor<
  f32[2][3]
  [
    [0.33501681685447693, 0.2770043909549713, 0.3879786431789398],
    [0.3326481878757477, 0.3033699095249176, 0.3639813959598541]
  ]
>