View Source Evision.BackgroundSubtractorKNN (Evision v0.2.9)

Summary

Types

t()

Type that represents an BackgroundSubtractorKNN struct.

Functions

Computes a foreground mask.

Computes a foreground mask.

Clears the algorithm state

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

Computes a background image.

Computes a background image.

Returns the shadow detection flag

Returns the threshold on the squared distance between the pixel and the sample

Returns the number of last frames that affect the background model

Returns the number of neighbours, the k in the kNN.

Returns the number of data samples in the background model

Returns the shadow threshold

Returns the shadow value

Reads algorithm parameters from a file storage

Enables or disables shadow detection

Sets the threshold on the squared distance

Sets the number of last frames that affect the background model

Sets the k in the kNN. How many nearest neighbours need to match.

Sets the number of data samples in the background model.

Sets the shadow threshold

Sets the shadow value

Stores algorithm parameters in a file storage

Types

@type t() :: %Evision.BackgroundSubtractorKNN{ref: reference()}

Type that represents an BackgroundSubtractorKNN struct.

  • ref. reference()

    The underlying erlang resource variable.

Functions

@spec apply(Keyword.t()) :: any() | {:error, String.t()}
@spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Computes a foreground mask.

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()

  • image: Evision.Mat.

    Next video frame.

Keyword Arguments
  • learningRate: double.

    The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.

Return
  • fgmask: Evision.Mat.t().

    The output foreground mask as an 8-bit binary image.

Python prototype (for reference only):

apply(image[, fgmask[, learningRate]]) -> fgmask
Link to this function

apply(self, image, opts)

View Source
@spec apply(t(), Evision.Mat.maybe_mat_in(), [{:learningRate, term()}] | nil) ::
  Evision.Mat.t() | {:error, String.t()}

Computes a foreground mask.

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()

  • image: Evision.Mat.

    Next video frame.

Keyword Arguments
  • learningRate: double.

    The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.

Return
  • fgmask: Evision.Mat.t().

    The output foreground mask as an 8-bit binary image.

Python prototype (for reference only):

apply(image[, fgmask[, learningRate]]) -> fgmask
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}

Clears the algorithm state

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()

Python prototype (for reference only):

clear() -> None
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • retval: bool

Python prototype (for reference only):

empty() -> retval
Link to this function

getBackgroundImage(named_args)

View Source
@spec getBackgroundImage(Keyword.t()) :: any() | {:error, String.t()}
@spec getBackgroundImage(t()) :: Evision.Mat.t() | {:error, String.t()}

Computes a background image.

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • backgroundImage: Evision.Mat.t().

    The output background image.

Note: Sometimes the background image can be very blurry, as it contain the average background statistics.

Python prototype (for reference only):

getBackgroundImage([, backgroundImage]) -> backgroundImage
Link to this function

getBackgroundImage(self, opts)

View Source
@spec getBackgroundImage(t(), [{atom(), term()}, ...] | nil) ::
  Evision.Mat.t() | {:error, String.t()}

Computes a background image.

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • backgroundImage: Evision.Mat.t().

    The output background image.

Note: Sometimes the background image can be very blurry, as it contain the average background statistics.

Python prototype (for reference only):

getBackgroundImage([, backgroundImage]) -> backgroundImage
Link to this function

getDefaultName(named_args)

View Source
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return

Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.

Python prototype (for reference only):

getDefaultName() -> retval
Link to this function

getDetectShadows(named_args)

View Source
@spec getDetectShadows(Keyword.t()) :: any() | {:error, String.t()}
@spec getDetectShadows(t()) :: boolean() | {:error, String.t()}

Returns the shadow detection flag

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • retval: bool

If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for details.

Python prototype (for reference only):

getDetectShadows() -> retval
Link to this function

getDist2Threshold(named_args)

View Source
@spec getDist2Threshold(Keyword.t()) :: any() | {:error, String.t()}
@spec getDist2Threshold(t()) :: number() | {:error, String.t()}

Returns the threshold on the squared distance between the pixel and the sample

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • retval: double

The threshold on the squared distance between the pixel and the sample to decide whether a pixel is close to a data sample.

Python prototype (for reference only):

getDist2Threshold() -> retval
@spec getHistory(Keyword.t()) :: any() | {:error, String.t()}
@spec getHistory(t()) :: integer() | {:error, String.t()}

Returns the number of last frames that affect the background model

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • retval: integer()

Python prototype (for reference only):

getHistory() -> retval
Link to this function

getkNNSamples(named_args)

View Source
@spec getkNNSamples(Keyword.t()) :: any() | {:error, String.t()}
@spec getkNNSamples(t()) :: integer() | {:error, String.t()}

Returns the number of neighbours, the k in the kNN.

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • retval: integer()

K is the number of samples that need to be within dist2Threshold in order to decide that that pixel is matching the kNN background model.

Python prototype (for reference only):

getkNNSamples() -> retval
@spec getNSamples(Keyword.t()) :: any() | {:error, String.t()}
@spec getNSamples(t()) :: integer() | {:error, String.t()}

Returns the number of data samples in the background model

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • retval: integer()

Python prototype (for reference only):

getNSamples() -> retval
Link to this function

getShadowThreshold(named_args)

View Source
@spec getShadowThreshold(Keyword.t()) :: any() | {:error, String.t()}
@spec getShadowThreshold(t()) :: number() | {:error, String.t()}

Returns the shadow threshold

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • retval: double

A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara, Detecting Moving Shadows...*, IEEE PAMI,2003.

Python prototype (for reference only):

getShadowThreshold() -> retval
Link to this function

getShadowValue(named_args)

View Source
@spec getShadowValue(Keyword.t()) :: any() | {:error, String.t()}
@spec getShadowValue(t()) :: integer() | {:error, String.t()}

Returns the shadow value

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
Return
  • retval: integer()

Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 in the mask always means background, 255 means foreground.

Python prototype (for reference only):

getShadowValue() -> retval
@spec read(Keyword.t()) :: any() | {:error, String.t()}
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

Reads algorithm parameters from a file storage

Positional Arguments

Python prototype (for reference only):

read(fn) -> None
@spec save(Keyword.t()) :: any() | {:error, String.t()}
@spec save(t(), binary()) :: t() | {:error, String.t()}

save

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
  • filename: String

Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).

Python prototype (for reference only):

save(filename) -> None
Link to this function

setDetectShadows(named_args)

View Source
@spec setDetectShadows(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setDetectShadows(self, detectShadows)

View Source
@spec setDetectShadows(t(), boolean()) :: t() | {:error, String.t()}

Enables or disables shadow detection

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
  • detectShadows: bool

Python prototype (for reference only):

setDetectShadows(detectShadows) -> None
Link to this function

setDist2Threshold(named_args)

View Source
@spec setDist2Threshold(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setDist2Threshold(self, dist2Threshold)

View Source
@spec setDist2Threshold(t(), number()) :: t() | {:error, String.t()}

Sets the threshold on the squared distance

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
  • dist2Threshold: double

Python prototype (for reference only):

setDist2Threshold(_dist2Threshold) -> None
@spec setHistory(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setHistory(self, history)

View Source
@spec setHistory(t(), integer()) :: t() | {:error, String.t()}

Sets the number of last frames that affect the background model

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
  • history: integer()

Python prototype (for reference only):

setHistory(history) -> None
Link to this function

setkNNSamples(named_args)

View Source
@spec setkNNSamples(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setkNNSamples(self, nkNN)

View Source
@spec setkNNSamples(t(), integer()) :: t() | {:error, String.t()}

Sets the k in the kNN. How many nearest neighbours need to match.

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
  • nkNN: integer()

Python prototype (for reference only):

setkNNSamples(_nkNN) -> None
@spec setNSamples(Keyword.t()) :: any() | {:error, String.t()}
@spec setNSamples(t(), integer()) :: t() | {:error, String.t()}

Sets the number of data samples in the background model.

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
  • nN: integer()

The model needs to be reinitalized to reserve memory.

Python prototype (for reference only):

setNSamples(_nN) -> None
Link to this function

setShadowThreshold(named_args)

View Source
@spec setShadowThreshold(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setShadowThreshold(self, threshold)

View Source
@spec setShadowThreshold(t(), number()) :: t() | {:error, String.t()}

Sets the shadow threshold

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
  • threshold: double

Python prototype (for reference only):

setShadowThreshold(threshold) -> None
Link to this function

setShadowValue(named_args)

View Source
@spec setShadowValue(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setShadowValue(self, value)

View Source
@spec setShadowValue(t(), integer()) :: t() | {:error, String.t()}

Sets the shadow value

Positional Arguments
  • self: Evision.BackgroundSubtractorKNN.t()
  • value: integer()

Python prototype (for reference only):

setShadowValue(value) -> None
@spec write(Keyword.t()) :: any() | {:error, String.t()}
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}

Stores algorithm parameters in a file storage

Positional Arguments

Python prototype (for reference only):

write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}

write

Positional Arguments

Has overloading in C++

Python prototype (for reference only):

write(fs, name) -> None