View Source Evision.ML.LogisticRegression (Evision v0.2.9)
Summary
Functions
Computes error on the training or test dataset
Computes error on the training or test dataset
Clears the algorithm state
Creates empty model.
empty
This function returns the trained parameters arranged across rows.
getDefaultName
getIterations
getLearningRate
getMiniBatchSize
getRegularization
getTermCriteria
getTrainMethod
Returns the number of variables in training samples
Returns true if the model is classifier
Returns true if the model is trained
Loads and creates a serialized LogisticRegression from a file
Loads and creates a serialized LogisticRegression from a file
Predicts responses for input samples and returns a float type.
Predicts responses for input samples and returns a float type.
Reads algorithm parameters from a file storage
save
setIterations
setLearningRate
setMiniBatchSize
setRegularization
setTermCriteria
setTrainMethod
Trains the statistical model
Trains the statistical model
Trains the statistical model
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.ML.LogisticRegression{ref: reference()}
Type that represents an ML.LogisticRegression
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec calcError(t(), Evision.ML.TrainData.t(), boolean()) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Computes error on the training or test dataset
Positional Arguments
self:
Evision.ML.LogisticRegression.t()
data:
Evision.ML.TrainData.t()
.the training data
test:
bool
.if true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing.
Return
retval:
float
resp:
Evision.Mat.t()
.the optional output responses.
The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp
@spec calcError( t(), Evision.ML.TrainData.t(), boolean(), [{atom(), term()}, ...] | nil ) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Computes error on the training or test dataset
Positional Arguments
self:
Evision.ML.LogisticRegression.t()
data:
Evision.ML.TrainData.t()
.the training data
test:
bool
.if true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing.
Return
retval:
float
resp:
Evision.Mat.t()
.the optional output responses.
The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the algorithm state
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Python prototype (for reference only):
clear() -> None
Creates empty model.
Return
- retval:
Evision.ML.LogisticRegression.t()
Creates Logistic Regression model with parameters given.
Python prototype (for reference only):
create() -> retval
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
empty
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec get_learnt_thetas(Keyword.t()) :: any() | {:error, String.t()}
@spec get_learnt_thetas(t()) :: Evision.Mat.t() | {:error, String.t()}
This function returns the trained parameters arranged across rows.
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
Evision.Mat.t()
For a two class classification problem, it returns a row matrix. It returns learnt parameters of the Logistic Regression as a matrix of type CV_32F.
Python prototype (for reference only):
get_learnt_thetas() -> retval
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
@spec getIterations(Keyword.t()) :: any() | {:error, String.t()}
@spec getIterations(t()) :: integer() | {:error, String.t()}
getIterations
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
integer()
@see setIterations/2
Python prototype (for reference only):
getIterations() -> retval
@spec getLearningRate(Keyword.t()) :: any() | {:error, String.t()}
@spec getLearningRate(t()) :: number() | {:error, String.t()}
getLearningRate
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
double
@see setLearningRate/2
Python prototype (for reference only):
getLearningRate() -> retval
@spec getMiniBatchSize(Keyword.t()) :: any() | {:error, String.t()}
@spec getMiniBatchSize(t()) :: integer() | {:error, String.t()}
getMiniBatchSize
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
integer()
@see setMiniBatchSize/2
Python prototype (for reference only):
getMiniBatchSize() -> retval
@spec getRegularization(Keyword.t()) :: any() | {:error, String.t()}
@spec getRegularization(t()) :: integer() | {:error, String.t()}
getRegularization
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
integer()
@see setRegularization/2
Python prototype (for reference only):
getRegularization() -> retval
@spec getTermCriteria(Keyword.t()) :: any() | {:error, String.t()}
@spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}
getTermCriteria
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
TermCriteria
@see setTermCriteria/2
Python prototype (for reference only):
getTermCriteria() -> retval
@spec getTrainMethod(Keyword.t()) :: any() | {:error, String.t()}
@spec getTrainMethod(t()) :: integer() | {:error, String.t()}
getTrainMethod
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
integer()
@see setTrainMethod/2
Python prototype (for reference only):
getTrainMethod() -> retval
@spec getVarCount(Keyword.t()) :: any() | {:error, String.t()}
@spec getVarCount(t()) :: integer() | {:error, String.t()}
Returns the number of variables in training samples
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
integer()
Python prototype (for reference only):
getVarCount() -> retval
@spec isClassifier(Keyword.t()) :: any() | {:error, String.t()}
@spec isClassifier(t()) :: boolean() | {:error, String.t()}
Returns true if the model is classifier
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
bool
Python prototype (for reference only):
isClassifier() -> retval
@spec isTrained(Keyword.t()) :: any() | {:error, String.t()}
@spec isTrained(t()) :: boolean() | {:error, String.t()}
Returns true if the model is trained
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
Return
- retval:
bool
Python prototype (for reference only):
isTrained() -> retval
@spec load(Keyword.t()) :: any() | {:error, String.t()}
@spec load(binary()) :: t() | {:error, String.t()}
Loads and creates a serialized LogisticRegression from a file
Positional Arguments
filepath:
String
.path to serialized LogisticRegression
Keyword Arguments
nodeName:
String
.name of node containing the classifier
Return
- retval:
Evision.ML.LogisticRegression.t()
Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval
Loads and creates a serialized LogisticRegression from a file
Positional Arguments
filepath:
String
.path to serialized LogisticRegression
Keyword Arguments
nodeName:
String
.name of node containing the classifier
Return
- retval:
Evision.ML.LogisticRegression.t()
Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval
@spec predict(t(), Evision.Mat.maybe_mat_in()) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Predicts responses for input samples and returns a float type.
Positional Arguments
self:
Evision.ML.LogisticRegression.t()
samples:
Evision.Mat
.The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.
Keyword Arguments
flags:
integer()
.Not used.
Return
retval:
float
results:
Evision.Mat.t()
.Predicted labels as a column matrix of type CV_32S.
Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results
@spec predict(t(), Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Predicts responses for input samples and returns a float type.
Positional Arguments
self:
Evision.ML.LogisticRegression.t()
samples:
Evision.Mat
.The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.
Keyword Arguments
flags:
integer()
.Not used.
Return
retval:
float
results:
Evision.Mat.t()
.Predicted labels as a column matrix of type CV_32S.
Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
save
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
setIterations
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- val:
integer()
@see getIterations/1
Python prototype (for reference only):
setIterations(val) -> None
setLearningRate
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- val:
double
@see getLearningRate/1
Python prototype (for reference only):
setLearningRate(val) -> None
setMiniBatchSize
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- val:
integer()
@see getMiniBatchSize/1
Python prototype (for reference only):
setMiniBatchSize(val) -> None
setRegularization
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- val:
integer()
@see getRegularization/1
Python prototype (for reference only):
setRegularization(val) -> None
setTermCriteria
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- val:
TermCriteria
@see getTermCriteria/1
Python prototype (for reference only):
setTermCriteria(val) -> None
setTrainMethod
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- val:
integer()
@see getTrainMethod/1
Python prototype (for reference only):
setTrainMethod(val) -> None
@spec train(t(), Evision.ML.TrainData.t()) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.LogisticRegression.t()
trainData:
Evision.ML.TrainData.t()
.training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
Keyword Arguments
flags:
integer()
.optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
Return
- retval:
bool
Python prototype (for reference only):
train(trainData[, flags]) -> retval
@spec train(t(), Evision.ML.TrainData.t(), [{:flags, term()}] | nil) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.LogisticRegression.t()
trainData:
Evision.ML.TrainData.t()
.training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
Keyword Arguments
flags:
integer()
.optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
Return
- retval:
bool
Python prototype (for reference only):
train(trainData[, flags]) -> retval
@spec train(t(), Evision.Mat.maybe_mat_in(), integer(), Evision.Mat.maybe_mat_in()) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.LogisticRegression.t()
samples:
Evision.Mat
.training samples
layout:
integer()
.See ml::SampleTypes.
responses:
Evision.Mat
.vector of responses associated with the training samples.
Return
- retval:
bool
Python prototype (for reference only):
train(samples, layout, responses) -> retval
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.ML.LogisticRegression.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None