View Source Evision.DNN.Layer (Evision v0.2.9)
Summary
Functions
Clears the algorithm state
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Computes and sets internal parameters according to inputs, outputs and blobs.
Computes and sets internal parameters according to inputs, outputs and blobs.
getDefaultName
Returns index of output blob in output array.
Reads algorithm parameters from a file storage
Allocates layer and computes output.
Allocates layer and computes output.
save
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.DNN.Layer{ref: reference()}
Type that represents an DNN.Layer
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the algorithm state
Positional Arguments
- self:
Evision.DNN.Layer.t()
Python prototype (for reference only):
clear() -> None
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
- self:
Evision.DNN.Layer.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec finalize(t(), [Evision.Mat.maybe_mat_in()]) :: [Evision.Mat.t()] | {:error, String.t()}
Computes and sets internal parameters according to inputs, outputs and blobs.
Positional Arguments
- self:
Evision.DNN.Layer.t()
- inputs:
[Evision.Mat]
Return
outputs:
[Evision.Mat]
.vector of already allocated output blobs
This method is called after network has allocated all memory for input and output blobs and before inferencing.
Python prototype (for reference only):
finalize(inputs[, outputs]) -> outputs
@spec finalize(t(), [Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil) :: [Evision.Mat.t()] | {:error, String.t()}
Computes and sets internal parameters according to inputs, outputs and blobs.
Positional Arguments
- self:
Evision.DNN.Layer.t()
- inputs:
[Evision.Mat]
Return
outputs:
[Evision.Mat]
.vector of already allocated output blobs
This method is called after network has allocated all memory for input and output blobs and before inferencing.
Python prototype (for reference only):
finalize(inputs[, outputs]) -> outputs
@spec get_blobs(t()) :: [Evision.Mat.t()]
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.DNN.Layer.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
Returns index of output blob in output array.
Positional Arguments
- self:
Evision.DNN.Layer.t()
- outputName:
String
Return
- retval:
integer()
@see inputNameToIndex()
Python prototype (for reference only):
outputNameToIndex(outputName) -> retval
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.DNN.Layer.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
@spec run(t(), [Evision.Mat.maybe_mat_in()], [Evision.Mat.maybe_mat_in()]) :: {[Evision.Mat.t()], [Evision.Mat.t()]} | {:error, String.t()}
Allocates layer and computes output.
Positional Arguments
- self:
Evision.DNN.Layer.t()
- inputs:
[Evision.Mat]
Return
- outputs:
[Evision.Mat]
. - internals:
[Evision.Mat]
@deprecated This method will be removed in the future release.
Python prototype (for reference only):
run(inputs, internals[, outputs]) -> outputs, internals
@spec run( t(), [Evision.Mat.maybe_mat_in()], [Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil ) :: {[Evision.Mat.t()], [Evision.Mat.t()]} | {:error, String.t()}
Allocates layer and computes output.
Positional Arguments
- self:
Evision.DNN.Layer.t()
- inputs:
[Evision.Mat]
Return
- outputs:
[Evision.Mat]
. - internals:
[Evision.Mat]
@deprecated This method will be removed in the future release.
Python prototype (for reference only):
run(inputs, internals[, outputs]) -> outputs, internals
save
Positional Arguments
- self:
Evision.DNN.Layer.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
@spec set_blobs(t(), [Evision.Mat.maybe_mat_in()]) :: t()
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.DNN.Layer.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.DNN.Layer.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None