View Source Evision.BgSegm.BackgroundSubtractorGMG (Evision v0.2.9)
Summary
Functions
Computes a foreground mask.
Computes a foreground mask.
Clears the algorithm state
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Computes a background image.
Computes a background image.
Returns the prior probability that each individual pixel is a background pixel.
Returns the value of decision threshold.
Returns the learning rate of the algorithm.
getDefaultName
Returns total number of distinct colors to maintain in histogram.
Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255.
Returns the minimum value taken on by pixels in image sequence. Usually 0.
Returns the number of frames used to initialize background model.
Returns the parameter used for quantization of color-space.
Returns the kernel radius used for morphological operations
Returns the status of background model update
Reads algorithm parameters from a file storage
save
Sets the prior probability that each individual pixel is a background pixel.
Sets the value of decision threshold.
Sets the learning rate of the algorithm.
Sets total number of distinct colors to maintain in histogram.
Sets the maximum value taken on by pixels in image sequence.
Sets the minimum value taken on by pixels in image sequence.
Sets the number of frames used to initialize background model.
Sets the parameter used for quantization of color-space
Sets the kernel radius used for morphological operations
Sets the status of background model update
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.BgSegm.BackgroundSubtractorGMG{ref: reference()}
Type that represents an BgSegm.BackgroundSubtractorGMG
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Computes a foreground mask.
Positional Arguments
self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
image:
Evision.Mat
.Next video frame.
Keyword Arguments
learningRate:
double
.The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.
Return
fgmask:
Evision.Mat.t()
.The output foreground mask as an 8-bit binary image.
Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask
@spec apply(t(), Evision.Mat.maybe_mat_in(), [{:learningRate, term()}] | nil) :: Evision.Mat.t() | {:error, String.t()}
Computes a foreground mask.
Positional Arguments
self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
image:
Evision.Mat
.Next video frame.
Keyword Arguments
learningRate:
double
.The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.
Return
fgmask:
Evision.Mat.t()
.The output foreground mask as an 8-bit binary image.
Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the algorithm state
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Python prototype (for reference only):
clear() -> None
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec getBackgroundImage(Keyword.t()) :: any() | {:error, String.t()}
@spec getBackgroundImage(t()) :: Evision.Mat.t() | {:error, String.t()}
Computes a background image.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
backgroundImage:
Evision.Mat.t()
.The output background image.
Note: Sometimes the background image can be very blurry, as it contain the average background statistics.
Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage
@spec getBackgroundImage(t(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
Computes a background image.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
backgroundImage:
Evision.Mat.t()
.The output background image.
Note: Sometimes the background image can be very blurry, as it contain the average background statistics.
Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage
@spec getBackgroundPrior(Keyword.t()) :: any() | {:error, String.t()}
@spec getBackgroundPrior(t()) :: number() | {:error, String.t()}
Returns the prior probability that each individual pixel is a background pixel.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
Python prototype (for reference only):
getBackgroundPrior() -> retval
@spec getDecisionThreshold(Keyword.t()) :: any() | {:error, String.t()}
@spec getDecisionThreshold(t()) :: number() | {:error, String.t()}
Returns the value of decision threshold.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
Decision value is the value above which pixel is determined to be FG.
Python prototype (for reference only):
getDecisionThreshold() -> retval
@spec getDefaultLearningRate(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultLearningRate(t()) :: number() | {:error, String.t()}
Returns the learning rate of the algorithm.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
It lies between 0.0 and 1.0. It determines how quickly features are "forgotten" from histograms.
Python prototype (for reference only):
getDefaultLearningRate() -> retval
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
@spec getMaxFeatures(Keyword.t()) :: any() | {:error, String.t()}
@spec getMaxFeatures(t()) :: integer() | {:error, String.t()}
Returns total number of distinct colors to maintain in histogram.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
integer()
Python prototype (for reference only):
getMaxFeatures() -> retval
@spec getMaxVal(Keyword.t()) :: any() | {:error, String.t()}
@spec getMaxVal(t()) :: number() | {:error, String.t()}
Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
Python prototype (for reference only):
getMaxVal() -> retval
@spec getMinVal(Keyword.t()) :: any() | {:error, String.t()}
@spec getMinVal(t()) :: number() | {:error, String.t()}
Returns the minimum value taken on by pixels in image sequence. Usually 0.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
Python prototype (for reference only):
getMinVal() -> retval
@spec getNumFrames(Keyword.t()) :: any() | {:error, String.t()}
@spec getNumFrames(t()) :: integer() | {:error, String.t()}
Returns the number of frames used to initialize background model.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
integer()
Python prototype (for reference only):
getNumFrames() -> retval
@spec getQuantizationLevels(Keyword.t()) :: any() | {:error, String.t()}
@spec getQuantizationLevels(t()) :: integer() | {:error, String.t()}
Returns the parameter used for quantization of color-space.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
integer()
It is the number of discrete levels in each channel to be used in histograms.
Python prototype (for reference only):
getQuantizationLevels() -> retval
@spec getSmoothingRadius(Keyword.t()) :: any() | {:error, String.t()}
@spec getSmoothingRadius(t()) :: integer() | {:error, String.t()}
Returns the kernel radius used for morphological operations
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
integer()
Python prototype (for reference only):
getSmoothingRadius() -> retval
@spec getUpdateBackgroundModel(Keyword.t()) :: any() | {:error, String.t()}
@spec getUpdateBackgroundModel(t()) :: boolean() | {:error, String.t()}
Returns the status of background model update
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
bool
Python prototype (for reference only):
getUpdateBackgroundModel() -> retval
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
save
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
Sets the prior probability that each individual pixel is a background pixel.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- bgprior:
double
Python prototype (for reference only):
setBackgroundPrior(bgprior) -> None
Sets the value of decision threshold.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- thresh:
double
Python prototype (for reference only):
setDecisionThreshold(thresh) -> None
Sets the learning rate of the algorithm.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- lr:
double
Python prototype (for reference only):
setDefaultLearningRate(lr) -> None
Sets total number of distinct colors to maintain in histogram.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- maxFeatures:
integer()
Python prototype (for reference only):
setMaxFeatures(maxFeatures) -> None
Sets the maximum value taken on by pixels in image sequence.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- val:
double
Python prototype (for reference only):
setMaxVal(val) -> None
Sets the minimum value taken on by pixels in image sequence.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- val:
double
Python prototype (for reference only):
setMinVal(val) -> None
Sets the number of frames used to initialize background model.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- nframes:
integer()
Python prototype (for reference only):
setNumFrames(nframes) -> None
Sets the parameter used for quantization of color-space
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- nlevels:
integer()
Python prototype (for reference only):
setQuantizationLevels(nlevels) -> None
Sets the kernel radius used for morphological operations
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- radius:
integer()
Python prototype (for reference only):
setSmoothingRadius(radius) -> None
Sets the status of background model update
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- update:
bool
Python prototype (for reference only):
setUpdateBackgroundModel(update) -> None
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None