View Source Evision.BgSegm.BackgroundSubtractorGMG (Evision v0.1.34)
Summary
Functions
Returns the prior probability that each individual pixel is a background pixel.
Returns the value of decision threshold.
Returns the learning rate of the algorithm.
Returns total number of distinct colors to maintain in histogram.
Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255.
Returns the minimum value taken on by pixels in image sequence. Usually 0.
Returns the number of frames used to initialize background model.
Returns the parameter used for quantization of color-space.
Returns the kernel radius used for morphological operations
Returns the status of background model update
Sets the prior probability that each individual pixel is a background pixel.
Sets the value of decision threshold.
Sets the learning rate of the algorithm.
Sets total number of distinct colors to maintain in histogram.
Sets the maximum value taken on by pixels in image sequence.
Sets the minimum value taken on by pixels in image sequence.
Sets the number of frames used to initialize background model.
Sets the parameter used for quantization of color-space
Sets the kernel radius used for morphological operations
Sets the status of background model update
Types
@type t() :: %Evision.BgSegm.BackgroundSubtractorGMG{ref: reference()}
Type that represents an BgSegm.BackgroundSubtractorGMG
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
Returns the prior probability that each individual pixel is a background pixel.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
Python prototype (for reference only):
getBackgroundPrior() -> retval
Returns the value of decision threshold.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
Decision value is the value above which pixel is determined to be FG.
Python prototype (for reference only):
getDecisionThreshold() -> retval
Returns the learning rate of the algorithm.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
It lies between 0.0 and 1.0. It determines how quickly features are "forgotten" from histograms.
Python prototype (for reference only):
getDefaultLearningRate() -> retval
Returns total number of distinct colors to maintain in histogram.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
int
Python prototype (for reference only):
getMaxFeatures() -> retval
Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
Python prototype (for reference only):
getMaxVal() -> retval
Returns the minimum value taken on by pixels in image sequence. Usually 0.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
double
Python prototype (for reference only):
getMinVal() -> retval
Returns the number of frames used to initialize background model.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
int
Python prototype (for reference only):
getNumFrames() -> retval
Returns the parameter used for quantization of color-space.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
int
It is the number of discrete levels in each channel to be used in histograms.
Python prototype (for reference only):
getQuantizationLevels() -> retval
Returns the kernel radius used for morphological operations
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
int
Python prototype (for reference only):
getSmoothingRadius() -> retval
Returns the status of background model update
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Return
- retval:
bool
Python prototype (for reference only):
getUpdateBackgroundModel() -> retval
Sets the prior probability that each individual pixel is a background pixel.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- bgprior:
double
Python prototype (for reference only):
setBackgroundPrior(bgprior) -> None
Sets the value of decision threshold.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- thresh:
double
Python prototype (for reference only):
setDecisionThreshold(thresh) -> None
Sets the learning rate of the algorithm.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- lr:
double
Python prototype (for reference only):
setDefaultLearningRate(lr) -> None
Sets total number of distinct colors to maintain in histogram.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- maxFeatures:
int
Python prototype (for reference only):
setMaxFeatures(maxFeatures) -> None
Sets the maximum value taken on by pixels in image sequence.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- val:
double
Python prototype (for reference only):
setMaxVal(val) -> None
Sets the minimum value taken on by pixels in image sequence.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- val:
double
Python prototype (for reference only):
setMinVal(val) -> None
Sets the number of frames used to initialize background model.
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- nframes:
int
Python prototype (for reference only):
setNumFrames(nframes) -> None
Sets the parameter used for quantization of color-space
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- nlevels:
int
Python prototype (for reference only):
setQuantizationLevels(nlevels) -> None
Sets the kernel radius used for morphological operations
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- radius:
int
Python prototype (for reference only):
setSmoothingRadius(radius) -> None
Sets the status of background model update
Positional Arguments
- self:
Evision.BgSegm.BackgroundSubtractorGMG.t()
- update:
bool
Python prototype (for reference only):
setUpdateBackgroundModel(update) -> None