View Source Evision.SIFT (Evision v0.2.9)

Summary

Types

t()

Type that represents an SIFT struct.

Functions

create

Variant 1:

detect

Variant 1:

detect

getContrastThreshold

getEdgeThreshold

getNOctaveLayers

Variant 1:

read

Types

@type t() :: %Evision.SIFT{ref: reference()}

Type that represents an SIFT struct.

  • ref. reference()

    The underlying erlang resource variable.

Functions

@spec compute(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

compute(self, images, keypoints)

View Source
@spec compute(t(), [Evision.Mat.maybe_mat_in()], [[Evision.KeyPoint.t()]]) ::
  {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}
@spec compute(t(), Evision.Mat.maybe_mat_in(), [Evision.KeyPoint.t()]) ::
  {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:

compute

Positional Arguments
  • self: Evision.SIFT.t()

  • images: [Evision.Mat].

    Image set.

Return
  • keypoints: [[Evision.KeyPoint]].

    Input collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).

  • descriptors: [Evision.Mat].

    Computed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.

Has overloading in C++

Python prototype (for reference only):

compute(images, keypoints[, descriptors]) -> keypoints, descriptors

Variant 2:

Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).

Positional Arguments
Return
  • keypoints: [Evision.KeyPoint].

    Input collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).

  • descriptors: Evision.Mat.t().

    Computed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.

Python prototype (for reference only):

compute(image, keypoints[, descriptors]) -> keypoints, descriptors
Link to this function

compute(self, images, keypoints, opts)

View Source
@spec compute(
  t(),
  [Evision.Mat.maybe_mat_in()],
  [[Evision.KeyPoint.t()]],
  [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}
@spec compute(
  t(),
  Evision.Mat.maybe_mat_in(),
  [Evision.KeyPoint.t()],
  [{atom(), term()}, ...] | nil
) ::
  {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:

compute

Positional Arguments
  • self: Evision.SIFT.t()

  • images: [Evision.Mat].

    Image set.

Return
  • keypoints: [[Evision.KeyPoint]].

    Input collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).

  • descriptors: [Evision.Mat].

    Computed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.

Has overloading in C++

Python prototype (for reference only):

compute(images, keypoints[, descriptors]) -> keypoints, descriptors

Variant 2:

Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).

Positional Arguments
Return
  • keypoints: [Evision.KeyPoint].

    Input collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).

  • descriptors: Evision.Mat.t().

    Computed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.

Python prototype (for reference only):

compute(image, keypoints[, descriptors]) -> keypoints, descriptors
@spec create() :: t() | {:error, String.t()}

create

Keyword Arguments
  • nfeatures: integer().

    The number of best features to retain. The features are ranked by their scores (measured in SIFT algorithm as the local contrast)

  • nOctaveLayers: integer().

    The number of layers in each octave. 3 is the value used in D. Lowe paper. The number of octaves is computed automatically from the image resolution.

  • contrastThreshold: double.

    The contrast threshold used to filter out weak features in semi-uniform (low-contrast) regions. The larger the threshold, the less features are produced by the detector.

  • edgeThreshold: double.

    The threshold used to filter out edge-like features. Note that the its meaning is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are filtered out (more features are retained).

  • sigma: double.

    The sigma of the Gaussian applied to the input image at the octave #0. If your image is captured with a weak camera with soft lenses, you might want to reduce the number.

  • enable_precise_upscale: bool.

    Whether to enable precise upscaling in the scale pyramid, which maps index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option is disabled by default.

Return
  • retval: Evision.SIFT.t()

Note: The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set this argument to 0.09.

Python prototype (for reference only):

create([, nfeatures[, nOctaveLayers[, contrastThreshold[, edgeThreshold[, sigma[, enable_precise_upscale]]]]]]) -> retval
@spec create(Keyword.t()) :: any() | {:error, String.t()}
@spec create(
  [
    contrastThreshold: term(),
    edgeThreshold: term(),
    enable_precise_upscale: term(),
    nOctaveLayers: term(),
    nfeatures: term(),
    sigma: term()
  ]
  | nil
) :: t() | {:error, String.t()}

create

Keyword Arguments
  • nfeatures: integer().

    The number of best features to retain. The features are ranked by their scores (measured in SIFT algorithm as the local contrast)

  • nOctaveLayers: integer().

    The number of layers in each octave. 3 is the value used in D. Lowe paper. The number of octaves is computed automatically from the image resolution.

  • contrastThreshold: double.

    The contrast threshold used to filter out weak features in semi-uniform (low-contrast) regions. The larger the threshold, the less features are produced by the detector.

  • edgeThreshold: double.

    The threshold used to filter out edge-like features. Note that the its meaning is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are filtered out (more features are retained).

  • sigma: double.

    The sigma of the Gaussian applied to the input image at the octave #0. If your image is captured with a weak camera with soft lenses, you might want to reduce the number.

  • enable_precise_upscale: bool.

    Whether to enable precise upscaling in the scale pyramid, which maps index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option is disabled by default.

Return
  • retval: Evision.SIFT.t()

Note: The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set this argument to 0.09.

Python prototype (for reference only):

create([, nfeatures[, nOctaveLayers[, contrastThreshold[, edgeThreshold[, sigma[, enable_precise_upscale]]]]]]) -> retval
Link to this function

create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType)

View Source
@spec create(integer(), integer(), number(), number(), number(), integer()) ::
  t() | {:error, String.t()}

Create SIFT with specified descriptorType.

Positional Arguments
  • nfeatures: integer().

    The number of best features to retain. The features are ranked by their scores (measured in SIFT algorithm as the local contrast)

  • nOctaveLayers: integer().

    The number of layers in each octave. 3 is the value used in D. Lowe paper. The number of octaves is computed automatically from the image resolution.

  • contrastThreshold: double.

    The contrast threshold used to filter out weak features in semi-uniform (low-contrast) regions. The larger the threshold, the less features are produced by the detector.

  • edgeThreshold: double.

    The threshold used to filter out edge-like features. Note that the its meaning is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are filtered out (more features are retained).

  • sigma: double.

    The sigma of the Gaussian applied to the input image at the octave #0. If your image is captured with a weak camera with soft lenses, you might want to reduce the number.

  • descriptorType: integer().

    The type of descriptors. Only CV_32F and CV_8U are supported.

Keyword Arguments
  • enable_precise_upscale: bool.

    Whether to enable precise upscaling in the scale pyramid, which maps index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option is disabled by default.

Return
  • retval: Evision.SIFT.t()

Note: The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set this argument to 0.09.

Python prototype (for reference only):

create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType[, enable_precise_upscale]) -> retval
Link to this function

create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType, opts)

View Source
@spec create(
  integer(),
  integer(),
  number(),
  number(),
  number(),
  integer(),
  [{:enable_precise_upscale, term()}] | nil
) :: t() | {:error, String.t()}

Create SIFT with specified descriptorType.

Positional Arguments
  • nfeatures: integer().

    The number of best features to retain. The features are ranked by their scores (measured in SIFT algorithm as the local contrast)

  • nOctaveLayers: integer().

    The number of layers in each octave. 3 is the value used in D. Lowe paper. The number of octaves is computed automatically from the image resolution.

  • contrastThreshold: double.

    The contrast threshold used to filter out weak features in semi-uniform (low-contrast) regions. The larger the threshold, the less features are produced by the detector.

  • edgeThreshold: double.

    The threshold used to filter out edge-like features. Note that the its meaning is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are filtered out (more features are retained).

  • sigma: double.

    The sigma of the Gaussian applied to the input image at the octave #0. If your image is captured with a weak camera with soft lenses, you might want to reduce the number.

  • descriptorType: integer().

    The type of descriptors. Only CV_32F and CV_8U are supported.

Keyword Arguments
  • enable_precise_upscale: bool.

    Whether to enable precise upscaling in the scale pyramid, which maps index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option is disabled by default.

Return
  • retval: Evision.SIFT.t()

Note: The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set this argument to 0.09.

Python prototype (for reference only):

create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType[, enable_precise_upscale]) -> retval
@spec defaultNorm(Keyword.t()) :: any() | {:error, String.t()}
@spec defaultNorm(t()) :: integer() | {:error, String.t()}

defaultNorm

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: integer()

Python prototype (for reference only):

defaultNorm() -> retval
Link to this function

descriptorSize(named_args)

View Source
@spec descriptorSize(Keyword.t()) :: any() | {:error, String.t()}
@spec descriptorSize(t()) :: integer() | {:error, String.t()}

descriptorSize

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: integer()

Python prototype (for reference only):

descriptorSize() -> retval
Link to this function

descriptorType(named_args)

View Source
@spec descriptorType(Keyword.t()) :: any() | {:error, String.t()}
@spec descriptorType(t()) :: integer() | {:error, String.t()}

descriptorType

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: integer()

Python prototype (for reference only):

descriptorType() -> retval
@spec detect(Keyword.t()) :: any() | {:error, String.t()}
@spec detect(t(), [Evision.Mat.maybe_mat_in()]) ::
  [[Evision.KeyPoint.t()]] | {:error, String.t()}
@spec detect(t(), Evision.Mat.maybe_mat_in()) ::
  [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:

detect

Positional Arguments
  • self: Evision.SIFT.t()

  • images: [Evision.Mat].

    Image set.

Keyword Arguments
  • masks: [Evision.Mat].

    Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].

Return
  • keypoints: [[Evision.KeyPoint]].

    The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .

Has overloading in C++

Python prototype (for reference only):

detect(images[, masks]) -> keypoints

Variant 2:

Detects keypoints in an image (first variant) or image set (second variant).

Positional Arguments
Keyword Arguments
  • mask: Evision.Mat.

    Mask specifying where to look for keypoints (optional). It must be a 8-bit integer matrix with non-zero values in the region of interest.

Return
  • keypoints: [Evision.KeyPoint].

    The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .

Python prototype (for reference only):

detect(image[, mask]) -> keypoints
Link to this function

detect(self, images, opts)

View Source
@spec detect(t(), [Evision.Mat.maybe_mat_in()], [{:masks, term()}] | nil) ::
  [[Evision.KeyPoint.t()]] | {:error, String.t()}
@spec detect(t(), Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
  [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:

detect

Positional Arguments
  • self: Evision.SIFT.t()

  • images: [Evision.Mat].

    Image set.

Keyword Arguments
  • masks: [Evision.Mat].

    Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].

Return
  • keypoints: [[Evision.KeyPoint]].

    The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .

Has overloading in C++

Python prototype (for reference only):

detect(images[, masks]) -> keypoints

Variant 2:

Detects keypoints in an image (first variant) or image set (second variant).

Positional Arguments
Keyword Arguments
  • mask: Evision.Mat.

    Mask specifying where to look for keypoints (optional). It must be a 8-bit integer matrix with non-zero values in the region of interest.

Return
  • keypoints: [Evision.KeyPoint].

    The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .

Python prototype (for reference only):

detect(image[, mask]) -> keypoints
Link to this function

detectAndCompute(named_args)

View Source
@spec detectAndCompute(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

detectAndCompute(self, image, mask)

View Source
@spec detectAndCompute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
  {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute

Positional Arguments
Keyword Arguments
  • useProvidedKeypoints: bool.
Return
  • keypoints: [Evision.KeyPoint]
  • descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors

Python prototype (for reference only):

detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors
Link to this function

detectAndCompute(self, image, mask, opts)

View Source
@spec detectAndCompute(
  t(),
  Evision.Mat.maybe_mat_in(),
  Evision.Mat.maybe_mat_in(),
  [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute

Positional Arguments
Keyword Arguments
  • useProvidedKeypoints: bool.
Return
  • keypoints: [Evision.KeyPoint]
  • descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors

Python prototype (for reference only):

detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}

empty

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: bool

Python prototype (for reference only):

empty() -> retval
Link to this function

getContrastThreshold(named_args)

View Source
@spec getContrastThreshold(Keyword.t()) :: any() | {:error, String.t()}
@spec getContrastThreshold(t()) :: number() | {:error, String.t()}

getContrastThreshold

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: double

Python prototype (for reference only):

getContrastThreshold() -> retval
Link to this function

getDefaultName(named_args)

View Source
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName

Positional Arguments
  • self: Evision.SIFT.t()
Return

Python prototype (for reference only):

getDefaultName() -> retval
Link to this function

getEdgeThreshold(named_args)

View Source
@spec getEdgeThreshold(Keyword.t()) :: any() | {:error, String.t()}
@spec getEdgeThreshold(t()) :: number() | {:error, String.t()}

getEdgeThreshold

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: double

Python prototype (for reference only):

getEdgeThreshold() -> retval
Link to this function

getNFeatures(named_args)

View Source
@spec getNFeatures(Keyword.t()) :: any() | {:error, String.t()}
@spec getNFeatures(t()) :: integer() | {:error, String.t()}

getNFeatures

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: integer()

Python prototype (for reference only):

getNFeatures() -> retval
Link to this function

getNOctaveLayers(named_args)

View Source
@spec getNOctaveLayers(Keyword.t()) :: any() | {:error, String.t()}
@spec getNOctaveLayers(t()) :: integer() | {:error, String.t()}

getNOctaveLayers

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: integer()

Python prototype (for reference only):

getNOctaveLayers() -> retval
@spec getSigma(Keyword.t()) :: any() | {:error, String.t()}
@spec getSigma(t()) :: number() | {:error, String.t()}

getSigma

Positional Arguments
  • self: Evision.SIFT.t()
Return
  • retval: double

Python prototype (for reference only):

getSigma() -> retval
@spec read(Keyword.t()) :: any() | {:error, String.t()}
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
@spec read(t(), binary()) :: t() | {:error, String.t()}

Variant 1:

read

Positional Arguments

Python prototype (for reference only):

read(arg1) -> None

Variant 2:

read

Positional Arguments
  • self: Evision.SIFT.t()
  • fileName: String

Python prototype (for reference only):

read(fileName) -> None
Link to this function

setContrastThreshold(named_args)

View Source
@spec setContrastThreshold(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setContrastThreshold(self, contrastThreshold)

View Source
@spec setContrastThreshold(t(), number()) :: t() | {:error, String.t()}

setContrastThreshold

Positional Arguments
  • self: Evision.SIFT.t()
  • contrastThreshold: double

Python prototype (for reference only):

setContrastThreshold(contrastThreshold) -> None
Link to this function

setEdgeThreshold(named_args)

View Source
@spec setEdgeThreshold(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setEdgeThreshold(self, edgeThreshold)

View Source
@spec setEdgeThreshold(t(), number()) :: t() | {:error, String.t()}

setEdgeThreshold

Positional Arguments
  • self: Evision.SIFT.t()
  • edgeThreshold: double

Python prototype (for reference only):

setEdgeThreshold(edgeThreshold) -> None
Link to this function

setNFeatures(named_args)

View Source
@spec setNFeatures(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setNFeatures(self, maxFeatures)

View Source
@spec setNFeatures(t(), integer()) :: t() | {:error, String.t()}

setNFeatures

Positional Arguments
  • self: Evision.SIFT.t()
  • maxFeatures: integer()

Python prototype (for reference only):

setNFeatures(maxFeatures) -> None
Link to this function

setNOctaveLayers(named_args)

View Source
@spec setNOctaveLayers(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

setNOctaveLayers(self, nOctaveLayers)

View Source
@spec setNOctaveLayers(t(), integer()) :: t() | {:error, String.t()}

setNOctaveLayers

Positional Arguments
  • self: Evision.SIFT.t()
  • nOctaveLayers: integer()

Python prototype (for reference only):

setNOctaveLayers(nOctaveLayers) -> None
@spec setSigma(Keyword.t()) :: any() | {:error, String.t()}
@spec setSigma(t(), number()) :: t() | {:error, String.t()}

setSigma

Positional Arguments
  • self: Evision.SIFT.t()
  • sigma: double

Python prototype (for reference only):

setSigma(sigma) -> None
@spec write(Keyword.t()) :: any() | {:error, String.t()}
@spec write(t(), binary()) :: t() | {:error, String.t()}

write

Positional Arguments
  • self: Evision.SIFT.t()
  • fileName: String

Python prototype (for reference only):

write(fileName) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}

write

Positional Arguments

Python prototype (for reference only):

write(fs, name) -> None