View Source Evision.ML.SVMSGD (Evision v0.2.9)
Summary
Functions
Computes error on the training or test dataset
Computes error on the training or test dataset
Clears the algorithm state
Creates empty model. Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to find the best parameters for your problem or use setOptimalParameters() to set some default parameters.
empty
getDefaultName
getInitialStepSize
getMarginRegularization
getMarginType
getShift
getStepDecreasingPower
getSvmsgdType
getTermCriteria
Returns the number of variables in training samples
getWeights
Returns true if the model is classifier
Returns true if the model is trained
Loads and creates a serialized SVMSGD from a file
Loads and creates a serialized SVMSGD from a file
Predicts response(s) for the provided sample(s)
Predicts response(s) for the provided sample(s)
Reads algorithm parameters from a file storage
save
setInitialStepSize
setMarginRegularization
setMarginType
Function sets optimal parameters values for chosen SVM SGD model.
Function sets optimal parameters values for chosen SVM SGD model.
setStepDecreasingPower
setSvmsgdType
setTermCriteria
Trains the statistical model
Trains the statistical model
Trains the statistical model
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.ML.SVMSGD{ref: reference()}
Type that represents an ML.SVMSGD
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec calcError(t(), Evision.ML.TrainData.t(), boolean()) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Computes error on the training or test dataset
Positional Arguments
self:
Evision.ML.SVMSGD.t()
data:
Evision.ML.TrainData.t()
.the training data
test:
bool
.if true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing.
Return
retval:
float
resp:
Evision.Mat.t()
.the optional output responses.
The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp
@spec calcError( t(), Evision.ML.TrainData.t(), boolean(), [{atom(), term()}, ...] | nil ) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Computes error on the training or test dataset
Positional Arguments
self:
Evision.ML.SVMSGD.t()
data:
Evision.ML.TrainData.t()
.the training data
test:
bool
.if true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing.
Return
retval:
float
resp:
Evision.Mat.t()
.the optional output responses.
The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the algorithm state
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Python prototype (for reference only):
clear() -> None
Creates empty model. Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to find the best parameters for your problem or use setOptimalParameters() to set some default parameters.
Return
- retval:
Evision.ML.SVMSGD.t()
Python prototype (for reference only):
create() -> retval
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
empty
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
@spec getInitialStepSize(Keyword.t()) :: any() | {:error, String.t()}
@spec getInitialStepSize(t()) :: number() | {:error, String.t()}
getInitialStepSize
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
float
@see setInitialStepSize/2
Python prototype (for reference only):
getInitialStepSize() -> retval
@spec getMarginRegularization(Keyword.t()) :: any() | {:error, String.t()}
@spec getMarginRegularization(t()) :: number() | {:error, String.t()}
getMarginRegularization
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
float
@see setMarginRegularization/2
Python prototype (for reference only):
getMarginRegularization() -> retval
@spec getMarginType(Keyword.t()) :: any() | {:error, String.t()}
@spec getMarginType(t()) :: integer() | {:error, String.t()}
getMarginType
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
integer()
@see setMarginType/2
Python prototype (for reference only):
getMarginType() -> retval
@spec getShift(Keyword.t()) :: any() | {:error, String.t()}
@spec getShift(t()) :: number() | {:error, String.t()}
getShift
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
float
@return the shift of the trained model (decision function f(x) = weights * x + shift).
Python prototype (for reference only):
getShift() -> retval
@spec getStepDecreasingPower(Keyword.t()) :: any() | {:error, String.t()}
@spec getStepDecreasingPower(t()) :: number() | {:error, String.t()}
getStepDecreasingPower
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
float
Python prototype (for reference only):
getStepDecreasingPower() -> retval
@spec getSvmsgdType(Keyword.t()) :: any() | {:error, String.t()}
@spec getSvmsgdType(t()) :: integer() | {:error, String.t()}
getSvmsgdType
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
integer()
@see setSvmsgdType/2
Python prototype (for reference only):
getSvmsgdType() -> retval
@spec getTermCriteria(Keyword.t()) :: any() | {:error, String.t()}
@spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}
getTermCriteria
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
TermCriteria
@see setTermCriteria/2
Python prototype (for reference only):
getTermCriteria() -> retval
@spec getVarCount(Keyword.t()) :: any() | {:error, String.t()}
@spec getVarCount(t()) :: integer() | {:error, String.t()}
Returns the number of variables in training samples
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
integer()
Python prototype (for reference only):
getVarCount() -> retval
@spec getWeights(Keyword.t()) :: any() | {:error, String.t()}
@spec getWeights(t()) :: Evision.Mat.t() | {:error, String.t()}
getWeights
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
Evision.Mat.t()
@return the weights of the trained model (decision function f(x) = weights * x + shift).
Python prototype (for reference only):
getWeights() -> retval
@spec isClassifier(Keyword.t()) :: any() | {:error, String.t()}
@spec isClassifier(t()) :: boolean() | {:error, String.t()}
Returns true if the model is classifier
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
bool
Python prototype (for reference only):
isClassifier() -> retval
@spec isTrained(Keyword.t()) :: any() | {:error, String.t()}
@spec isTrained(t()) :: boolean() | {:error, String.t()}
Returns true if the model is trained
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Return
- retval:
bool
Python prototype (for reference only):
isTrained() -> retval
@spec load(Keyword.t()) :: any() | {:error, String.t()}
@spec load(binary()) :: t() | {:error, String.t()}
Loads and creates a serialized SVMSGD from a file
Positional Arguments
filepath:
String
.path to serialized SVMSGD
Keyword Arguments
nodeName:
String
.name of node containing the classifier
Return
- retval:
Evision.ML.SVMSGD.t()
Use SVMSGD::save to serialize and store an SVMSGD to disk. Load the SVMSGD from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval
Loads and creates a serialized SVMSGD from a file
Positional Arguments
filepath:
String
.path to serialized SVMSGD
Keyword Arguments
nodeName:
String
.name of node containing the classifier
Return
- retval:
Evision.ML.SVMSGD.t()
Use SVMSGD::save to serialize and store an SVMSGD to disk. Load the SVMSGD from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval
@spec predict(t(), Evision.Mat.maybe_mat_in()) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Predicts response(s) for the provided sample(s)
Positional Arguments
self:
Evision.ML.SVMSGD.t()
samples:
Evision.Mat
.The input samples, floating-point matrix
Keyword Arguments
flags:
integer()
.The optional flags, model-dependent. See cv::ml::StatModel::Flags.
Return
retval:
float
results:
Evision.Mat.t()
.The optional output matrix of results.
Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results
@spec predict(t(), Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Predicts response(s) for the provided sample(s)
Positional Arguments
self:
Evision.ML.SVMSGD.t()
samples:
Evision.Mat
.The input samples, floating-point matrix
Keyword Arguments
flags:
integer()
.The optional flags, model-dependent. See cv::ml::StatModel::Flags.
Return
retval:
float
results:
Evision.Mat.t()
.The optional output matrix of results.
Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
save
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
setInitialStepSize
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- initialStepSize:
float
@see getInitialStepSize/1
Python prototype (for reference only):
setInitialStepSize(InitialStepSize) -> None
setMarginRegularization
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- marginRegularization:
float
@see getMarginRegularization/1
Python prototype (for reference only):
setMarginRegularization(marginRegularization) -> None
setMarginType
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- marginType:
integer()
@see getMarginType/1
Python prototype (for reference only):
setMarginType(marginType) -> None
@spec setOptimalParameters(Keyword.t()) :: any() | {:error, String.t()}
@spec setOptimalParameters(t()) :: t() | {:error, String.t()}
Function sets optimal parameters values for chosen SVM SGD model.
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Keyword Arguments
svmsgdType:
integer()
.is the type of SVMSGD classifier.
marginType:
integer()
.is the type of margin constraint.
Python prototype (for reference only):
setOptimalParameters([, svmsgdType[, marginType]]) -> None
@spec setOptimalParameters(t(), [marginType: term(), svmsgdType: term()] | nil) :: t() | {:error, String.t()}
Function sets optimal parameters values for chosen SVM SGD model.
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
Keyword Arguments
svmsgdType:
integer()
.is the type of SVMSGD classifier.
marginType:
integer()
.is the type of margin constraint.
Python prototype (for reference only):
setOptimalParameters([, svmsgdType[, marginType]]) -> None
setStepDecreasingPower
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- stepDecreasingPower:
float
Python prototype (for reference only):
setStepDecreasingPower(stepDecreasingPower) -> None
setSvmsgdType
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- svmsgdType:
integer()
@see getSvmsgdType/1
Python prototype (for reference only):
setSvmsgdType(svmsgdType) -> None
setTermCriteria
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- val:
TermCriteria
@see getTermCriteria/1
Python prototype (for reference only):
setTermCriteria(val) -> None
@spec train(t(), Evision.ML.TrainData.t()) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.SVMSGD.t()
trainData:
Evision.ML.TrainData.t()
.training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
Keyword Arguments
flags:
integer()
.optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
Return
- retval:
bool
Python prototype (for reference only):
train(trainData[, flags]) -> retval
@spec train(t(), Evision.ML.TrainData.t(), [{:flags, term()}] | nil) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.SVMSGD.t()
trainData:
Evision.ML.TrainData.t()
.training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
Keyword Arguments
flags:
integer()
.optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
Return
- retval:
bool
Python prototype (for reference only):
train(trainData[, flags]) -> retval
@spec train(t(), Evision.Mat.maybe_mat_in(), integer(), Evision.Mat.maybe_mat_in()) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.SVMSGD.t()
samples:
Evision.Mat
.training samples
layout:
integer()
.See ml::SampleTypes.
responses:
Evision.Mat
.vector of responses associated with the training samples.
Return
- retval:
bool
Python prototype (for reference only):
train(samples, layout, responses) -> retval
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.ML.SVMSGD.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None