View Source Evision.LineDescriptor.BinaryDescriptorMatcher (Evision v0.2.9)
Summary
Functions
Constructor.
Clears the algorithm state
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
getDefaultName
For every input query descriptor, retrieve the best k matching ones from a dataset provided from user or from the one internal to class
For every input query descriptor, retrieve the best k matching ones from a dataset provided from user or from the one internal to class
knnMatchQuery
knnMatchQuery
For every input query descriptor, retrieve the best matching one from a dataset provided from user or from the one internal to class
For every input query descriptor, retrieve the best matching one from a dataset provided from user or from the one internal to class
matchQuery
matchQuery
Reads algorithm parameters from a file storage
save
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.LineDescriptor.BinaryDescriptorMatcher{ref: reference()}
Type that represents an LineDescriptor.BinaryDescriptorMatcher
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
Constructor.
Return
- self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
The BinaryDescriptorMatcher constructed is able to store and manage 256-bits long entries.
Python prototype (for reference only):
BinaryDescriptorMatcher() -> <line_descriptor_BinaryDescriptorMatcher object>
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the algorithm state
Positional Arguments
- self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
Python prototype (for reference only):
clear() -> None
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
- self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
@spec knnMatch(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
For every input query descriptor, retrieve the best k matching ones from a dataset provided from user or from the one internal to class
Positional Arguments
self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.query descriptors
trainDescriptors:
Evision.Mat
.dataset of descriptors furnished by user
k:
integer()
.number of the closest descriptors to be returned for every input query
Keyword Arguments
mask:
Evision.Mat
.mask to select which input descriptors must be matched to ones in dataset
compactResult:
bool
.flag to obtain a compact result (if true, a vector that doesn't contain any matches for a given query is not inserted in final result)
Return
matches:
[[Evision.DMatch]]
.vector to host retrieved matches
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
@spec knnMatch( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer(), [compactResult: term(), mask: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
For every input query descriptor, retrieve the best k matching ones from a dataset provided from user or from the one internal to class
Positional Arguments
self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.query descriptors
trainDescriptors:
Evision.Mat
.dataset of descriptors furnished by user
k:
integer()
.number of the closest descriptors to be returned for every input query
Keyword Arguments
mask:
Evision.Mat
.mask to select which input descriptors must be matched to ones in dataset
compactResult:
bool
.flag to obtain a compact result (if true, a vector that doesn't contain any matches for a given query is not inserted in final result)
Return
matches:
[[Evision.DMatch]]
.vector to host retrieved matches
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
@spec knnMatchQuery( t(), Evision.Mat.maybe_mat_in(), [[Evision.DMatch.t()]], integer() ) :: t() | {:error, String.t()}
knnMatchQuery
Positional Arguments
self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.query descriptors
matches:
[[Evision.DMatch]]
.vector to host retrieved matches
k:
integer()
.number of the closest descriptors to be returned for every input query
Keyword Arguments
masks:
[Evision.Mat]
.vector of masks to select which input descriptors must be matched to ones in dataset (the i-th mask in vector indicates whether each input query can be matched with descriptors in dataset relative to i-th image)
compactResult:
bool
.flag to obtain a compact result (if true, a vector that doesn't contain any matches for a given query is not inserted in final result)
Has overloading in C++
Python prototype (for reference only):
knnMatchQuery(queryDescriptors, matches, k[, masks[, compactResult]]) -> None
@spec knnMatchQuery( t(), Evision.Mat.maybe_mat_in(), [[Evision.DMatch.t()]], integer(), [compactResult: term(), masks: term()] | nil ) :: t() | {:error, String.t()}
knnMatchQuery
Positional Arguments
self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.query descriptors
matches:
[[Evision.DMatch]]
.vector to host retrieved matches
k:
integer()
.number of the closest descriptors to be returned for every input query
Keyword Arguments
masks:
[Evision.Mat]
.vector of masks to select which input descriptors must be matched to ones in dataset (the i-th mask in vector indicates whether each input query can be matched with descriptors in dataset relative to i-th image)
compactResult:
bool
.flag to obtain a compact result (if true, a vector that doesn't contain any matches for a given query is not inserted in final result)
Has overloading in C++
Python prototype (for reference only):
knnMatchQuery(queryDescriptors, matches, k[, masks[, compactResult]]) -> None
@spec match(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) :: [Evision.DMatch.t()] | {:error, String.t()}
For every input query descriptor, retrieve the best matching one from a dataset provided from user or from the one internal to class
Positional Arguments
self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.query descriptors
trainDescriptors:
Evision.Mat
.dataset of descriptors furnished by user
Keyword Arguments
mask:
Evision.Mat
.mask to select which input descriptors must be matched to one in dataset
Return
matches:
[Evision.DMatch]
.vector to host retrieved matches
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
@spec match( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil ) :: [Evision.DMatch.t()] | {:error, String.t()}
For every input query descriptor, retrieve the best matching one from a dataset provided from user or from the one internal to class
Positional Arguments
self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.query descriptors
trainDescriptors:
Evision.Mat
.dataset of descriptors furnished by user
Keyword Arguments
mask:
Evision.Mat
.mask to select which input descriptors must be matched to one in dataset
Return
matches:
[Evision.DMatch]
.vector to host retrieved matches
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
@spec matchQuery(t(), Evision.Mat.maybe_mat_in()) :: [Evision.DMatch.t()] | {:error, String.t()}
matchQuery
Positional Arguments
self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.query descriptors
Keyword Arguments
masks:
[Evision.Mat]
.vector of masks to select which input descriptors must be matched to one in dataset (the i-th mask in vector indicates whether each input query can be matched with descriptors in dataset relative to i-th image)
Return
matches:
[Evision.DMatch]
.vector to host retrieved matches
Has overloading in C++
Python prototype (for reference only):
matchQuery(queryDescriptors[, masks]) -> matches
@spec matchQuery(t(), Evision.Mat.maybe_mat_in(), [{:masks, term()}] | nil) :: [Evision.DMatch.t()] | {:error, String.t()}
matchQuery
Positional Arguments
self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.query descriptors
Keyword Arguments
masks:
[Evision.Mat]
.vector of masks to select which input descriptors must be matched to one in dataset (the i-th mask in vector indicates whether each input query can be matched with descriptors in dataset relative to i-th image)
Return
matches:
[Evision.DMatch]
.vector to host retrieved matches
Has overloading in C++
Python prototype (for reference only):
matchQuery(queryDescriptors[, masks]) -> matches
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
save
Positional Arguments
- self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.LineDescriptor.BinaryDescriptorMatcher.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None