View Source Evision.ImgHash (Evision v0.2.9)
Summary
Functions
Calculates img_hash::AverageHash in one call
Calculates img_hash::AverageHash in one call
Computes block mean hash of the input image
Computes block mean hash of the input image
Computes color moment hash of the input, the algorithm is come from the paper "Perceptual Hashing for Color Images Using Invariant Moments"
Computes color moment hash of the input, the algorithm is come from the paper "Perceptual Hashing for Color Images Using Invariant Moments"
Computes average hash value of the input image
Computes average hash value of the input image
Computes pHash value of the input image
Computes pHash value of the input image
Computes radial variance hash of the input image
Computes radial variance hash of the input image
Types
@type t() :: %Evision.ImgHash{ref: reference()}
Type that represents an ImgHash
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec averageHash(Keyword.t()) :: any() | {:error, String.t()}
@spec averageHash(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Calculates img_hash::AverageHash in one call
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.
Return
outputArr:
Evision.Mat.t()
.Hash value of input, it will contain 16 hex decimal number, return type is CV_8U
Python prototype (for reference only):
averageHash(inputArr[, outputArr]) -> outputArr
@spec averageHash(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
Calculates img_hash::AverageHash in one call
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.
Return
outputArr:
Evision.Mat.t()
.Hash value of input, it will contain 16 hex decimal number, return type is CV_8U
Python prototype (for reference only):
averageHash(inputArr[, outputArr]) -> outputArr
@spec blockMeanHash(Keyword.t()) :: any() | {:error, String.t()}
@spec blockMeanHash(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Computes block mean hash of the input image
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.
Keyword Arguments
mode:
integer()
.the mode
Return
outputArr:
Evision.Mat.t()
.Hash value of input, it will contain 16 hex decimal number, return type is CV_8U
Python prototype (for reference only):
blockMeanHash(inputArr[, outputArr[, mode]]) -> outputArr
@spec blockMeanHash(Evision.Mat.maybe_mat_in(), [{:mode, term()}] | nil) :: Evision.Mat.t() | {:error, String.t()}
Computes block mean hash of the input image
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.
Keyword Arguments
mode:
integer()
.the mode
Return
outputArr:
Evision.Mat.t()
.Hash value of input, it will contain 16 hex decimal number, return type is CV_8U
Python prototype (for reference only):
blockMeanHash(inputArr[, outputArr[, mode]]) -> outputArr
@spec colorMomentHash(Keyword.t()) :: any() | {:error, String.t()}
@spec colorMomentHash(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Computes color moment hash of the input, the algorithm is come from the paper "Perceptual Hashing for Color Images Using Invariant Moments"
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.
Return
outputArr:
Evision.Mat.t()
.42 hash values with type CV_64F(double)
Python prototype (for reference only):
colorMomentHash(inputArr[, outputArr]) -> outputArr
@spec colorMomentHash(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
Computes color moment hash of the input, the algorithm is come from the paper "Perceptual Hashing for Color Images Using Invariant Moments"
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.
Return
outputArr:
Evision.Mat.t()
.42 hash values with type CV_64F(double)
Python prototype (for reference only):
colorMomentHash(inputArr[, outputArr]) -> outputArr
@spec marrHildrethHash(Keyword.t()) :: any() | {:error, String.t()}
@spec marrHildrethHash(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Computes average hash value of the input image
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3, CV_8UC1.
Keyword Arguments
alpha:
float
.int scale factor for marr wavelet (default=2).
scale:
float
.int level of scale factor (default = 1)
Return
outputArr:
Evision.Mat.t()
.Hash value of input, it will contain 16 hex decimal number, return type is CV_8U
Python prototype (for reference only):
marrHildrethHash(inputArr[, outputArr[, alpha[, scale]]]) -> outputArr
@spec marrHildrethHash( Evision.Mat.maybe_mat_in(), [alpha: term(), scale: term()] | nil ) :: Evision.Mat.t() | {:error, String.t()}
Computes average hash value of the input image
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3, CV_8UC1.
Keyword Arguments
alpha:
float
.int scale factor for marr wavelet (default=2).
scale:
float
.int level of scale factor (default = 1)
Return
outputArr:
Evision.Mat.t()
.Hash value of input, it will contain 16 hex decimal number, return type is CV_8U
Python prototype (for reference only):
marrHildrethHash(inputArr[, outputArr[, alpha[, scale]]]) -> outputArr
@spec pHash(Keyword.t()) :: any() | {:error, String.t()}
@spec pHash(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Computes pHash value of the input image
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3, CV_8UC1.
Return
outputArr:
Evision.Mat.t()
.Hash value of input, it will contain 8 uchar value
Python prototype (for reference only):
pHash(inputArr[, outputArr]) -> outputArr
@spec pHash(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
Computes pHash value of the input image
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3, CV_8UC1.
Return
outputArr:
Evision.Mat.t()
.Hash value of input, it will contain 8 uchar value
Python prototype (for reference only):
pHash(inputArr[, outputArr]) -> outputArr
@spec radialVarianceHash(Keyword.t()) :: any() | {:error, String.t()}
@spec radialVarianceHash(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Computes radial variance hash of the input image
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3, CV_8UC1.
Keyword Arguments
sigma:
double
.Gaussian kernel standard deviation
numOfAngleLine:
integer()
.The number of angles to consider
Return
outputArr:
Evision.Mat.t()
.Hash value of input
Python prototype (for reference only):
radialVarianceHash(inputArr[, outputArr[, sigma[, numOfAngleLine]]]) -> outputArr
@spec radialVarianceHash( Evision.Mat.maybe_mat_in(), [numOfAngleLine: term(), sigma: term()] | nil ) :: Evision.Mat.t() | {:error, String.t()}
Computes radial variance hash of the input image
Positional Arguments
inputArr:
Evision.Mat
.input image want to compute hash value, type should be CV_8UC4, CV_8UC3, CV_8UC1.
Keyword Arguments
sigma:
double
.Gaussian kernel standard deviation
numOfAngleLine:
integer()
.The number of angles to consider
Return
outputArr:
Evision.Mat.t()
.Hash value of input
Python prototype (for reference only):
radialVarianceHash(inputArr[, outputArr[, sigma[, numOfAngleLine]]]) -> outputArr