View Source Evision.CUDA.DescriptorMatcher (Evision v0.2.9)
Summary
Functions
Adds descriptors to train a descriptor collection.
Clears the train descriptor collection.
Brute-force descriptor matcher.
Brute-force descriptor matcher.
Returns true if there are no train descriptors in the collection.
getDefaultName
Returns a constant link to the train descriptor collection.
Returns true if the descriptor matcher supports masking permissible matches.
Variant 1:
knnMatch
Variant 1:
Finds the k best matches for each descriptor from a query set (blocking version).
Variant 1:
Finds the k best matches for each descriptor from a query set (blocking version).
Variant 1:
knnMatchAsync
Variant 1:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Variant 1:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Variant 1:
Converts matches array from internal representation to standard matches vector.
Variant 1:
Converts matches array from internal representation to standard matches vector.
Variant 1:
match
Variant 1:
Finds the best match for each descriptor from a query set (blocking version).
Variant 1:
Finds the best match for each descriptor from a query set (blocking version).
Variant 1:
matchAsync
Variant 1:
Finds the best match for each descriptor from a query set (asynchronous version).
Variant 1:
Finds the best match for each descriptor from a query set (asynchronous version).
Variant 1:
Converts matches array from internal representation to standard matches vector.
Variant 1:
radiusMatch
Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Variant 1:
radiusMatchAsync
Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Variant 1:
Converts matches array from internal representation to standard matches vector.
Variant 1:
Converts matches array from internal representation to standard matches vector.
Reads algorithm parameters from a file storage
save
Trains a descriptor matcher.
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.CUDA.DescriptorMatcher{ref: reference()}
Type that represents an CUDA.DescriptorMatcher
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec add(t(), [Evision.CUDA.GpuMat.t()]) :: t() | {:error, String.t()}
Adds descriptors to train a descriptor collection.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
descriptors:
[Evision.CUDA.GpuMat]
.Descriptors to add. Each descriptors[i] is a set of descriptors from the same train image.
If the collection is not empty, the new descriptors are added to existing train descriptors.
Python prototype (for reference only):
add(descriptors) -> None
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the train descriptor collection.
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
Python prototype (for reference only):
clear() -> None
Brute-force descriptor matcher.
Keyword Arguments
normType:
integer()
.One of NORM_L1, NORM_L2, NORM_HAMMING. L1 and L2 norms are preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and BRIEF).
Return
- retval:
Evision.CUDA.DescriptorMatcher.t()
For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each one. This descriptor matcher supports masking permissible matches of descriptor sets.
Python prototype (for reference only):
createBFMatcher([, normType]) -> retval
@spec createBFMatcher(Keyword.t()) :: any() | {:error, String.t()}
@spec createBFMatcher([{:normType, term()}] | nil) :: t() | {:error, String.t()}
Brute-force descriptor matcher.
Keyword Arguments
normType:
integer()
.One of NORM_L1, NORM_L2, NORM_HAMMING. L1 and L2 norms are preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and BRIEF).
Return
- retval:
Evision.CUDA.DescriptorMatcher.t()
For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each one. This descriptor matcher supports masking permissible matches of descriptor sets.
Python prototype (for reference only):
createBFMatcher([, normType]) -> retval
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
Returns true if there are no train descriptors in the collection.
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
@spec getTrainDescriptors(Keyword.t()) :: any() | {:error, String.t()}
@spec getTrainDescriptors(t()) :: [Evision.CUDA.GpuMat.t()] | {:error, String.t()}
Returns a constant link to the train descriptor collection.
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
Return
- retval:
[Evision.CUDA.GpuMat]
Python prototype (for reference only):
getTrainDescriptors() -> retval
@spec isMaskSupported(Keyword.t()) :: any() | {:error, String.t()}
@spec isMaskSupported(t()) :: boolean() | {:error, String.t()}
Returns true if the descriptor matcher supports masking permissible matches.
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
Return
- retval:
bool
Python prototype (for reference only):
isMaskSupported() -> retval
@spec knnMatch(t(), Evision.Mat.maybe_mat_in(), integer()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec knnMatch(t(), Evision.CUDA.GpuMat.t(), integer()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
knnMatch
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
- k:
integer()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - compactResult:
bool
.
Return
- matches:
[[Evision.DMatch]]
Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches
Variant 2:
knnMatch
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
- k:
integer()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - compactResult:
bool
.
Return
- matches:
[[Evision.DMatch]]
Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches
@spec knnMatch( t(), Evision.Mat.maybe_mat_in(), integer(), [compactResult: term(), masks: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec knnMatch( t(), Evision.CUDA.GpuMat.t(), integer(), [compactResult: term(), masks: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec knnMatch(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec knnMatch(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), integer()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
Finds the k best matches for each descriptor from a query set (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
k:
integer()
.Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Matches. Each matches[i] is k or less matches for the same query descriptor.
These extended variants of DescriptorMatcher::match methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 2:
Finds the k best matches for each descriptor from a query set (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
k:
integer()
.Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Matches. Each matches[i] is k or less matches for the same query descriptor.
These extended variants of DescriptorMatcher::match methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 3:
knnMatch
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
- k:
integer()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - compactResult:
bool
.
Return
- matches:
[[Evision.DMatch]]
Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches
Variant 4:
knnMatch
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
- k:
integer()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - compactResult:
bool
.
Return
- matches:
[[Evision.DMatch]]
Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches
@spec knnMatch( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer(), [compactResult: term(), mask: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec knnMatch( t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), integer(), [compactResult: term(), mask: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
Finds the k best matches for each descriptor from a query set (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
k:
integer()
.Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Matches. Each matches[i] is k or less matches for the same query descriptor.
These extended variants of DescriptorMatcher::match methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 2:
Finds the k best matches for each descriptor from a query set (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
k:
integer()
.Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Matches. Each matches[i] is k or less matches for the same query descriptor.
These extended variants of DescriptorMatcher::match methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
@spec knnMatchAsync(t(), Evision.Mat.maybe_mat_in(), integer()) :: Evision.Mat.t() | {:error, String.t()}
@spec knnMatchAsync(t(), Evision.CUDA.GpuMat.t(), integer()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
knnMatchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
- k:
integer()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.Mat.t()
.
Has overloading in C++
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, k[, matches[, masks[, stream]]]) -> matches
Variant 2:
knnMatchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
- k:
integer()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.CUDA.GpuMat.t()
.
Has overloading in C++
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, k[, matches[, masks[, stream]]]) -> matches
@spec knnMatchAsync( t(), Evision.Mat.maybe_mat_in(), integer(), [masks: term(), stream: term()] | nil ) :: Evision.Mat.t() | {:error, String.t()}
@spec knnMatchAsync( t(), Evision.CUDA.GpuMat.t(), integer(), [masks: term(), stream: term()] | nil ) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
@spec knnMatchAsync( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer() ) :: Evision.Mat.t() | {:error, String.t()}
@spec knnMatchAsync(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), integer()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
k:
integer()
.Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.Mat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.
These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync for the details about query and train descriptors.
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, trainDescriptors, k[, matches[, mask[, stream]]]) -> matches
Variant 2:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
k:
integer()
.Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.CUDA.GpuMat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.
These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync for the details about query and train descriptors.
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, trainDescriptors, k[, matches[, mask[, stream]]]) -> matches
Variant 3:
knnMatchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
- k:
integer()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.Mat.t()
.
Has overloading in C++
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, k[, matches[, masks[, stream]]]) -> matches
Variant 4:
knnMatchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
- k:
integer()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.CUDA.GpuMat.t()
.
Has overloading in C++
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, k[, matches[, masks[, stream]]]) -> matches
@spec knnMatchAsync( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer(), [mask: term(), stream: term()] | nil ) :: Evision.Mat.t() | {:error, String.t()}
@spec knnMatchAsync( t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), integer(), [mask: term(), stream: term()] | nil ) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
k:
integer()
.Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.Mat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.
These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync for the details about query and train descriptors.
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, trainDescriptors, k[, matches[, mask[, stream]]]) -> matches
Variant 2:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
k:
integer()
.Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.CUDA.GpuMat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.
These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync for the details about query and train descriptors.
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, trainDescriptors, k[, matches[, mask[, stream]]]) -> matches
@spec knnMatchConvert(t(), Evision.Mat.maybe_mat_in()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec knnMatchConvert(t(), Evision.CUDA.GpuMat.t()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.Mat
.Matches, returned from DescriptorMatcher::knnMatchAsync.
Keyword Arguments
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result. Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
knnMatchConvert(gpu_matches[, compactResult]) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.CUDA.GpuMat.t()
.Matches, returned from DescriptorMatcher::knnMatchAsync.
Keyword Arguments
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result. Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
knnMatchConvert(gpu_matches[, compactResult]) -> matches
@spec knnMatchConvert( t(), Evision.Mat.maybe_mat_in(), [{:compactResult, term()}] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec knnMatchConvert(t(), Evision.CUDA.GpuMat.t(), [{:compactResult, term()}] | nil) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.Mat
.Matches, returned from DescriptorMatcher::knnMatchAsync.
Keyword Arguments
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result. Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
knnMatchConvert(gpu_matches[, compactResult]) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.CUDA.GpuMat.t()
.Matches, returned from DescriptorMatcher::knnMatchAsync.
Keyword Arguments
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result. Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
knnMatchConvert(gpu_matches[, compactResult]) -> matches
@spec match(t(), Evision.Mat.maybe_mat_in()) :: [Evision.DMatch.t()] | {:error, String.t()}
@spec match(t(), Evision.CUDA.GpuMat.t()) :: [Evision.DMatch.t()] | {:error, String.t()}
Variant 1:
match
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
.
Return
- matches:
[Evision.DMatch]
Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches
Variant 2:
match
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
.
Return
- matches:
[Evision.DMatch]
Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches
@spec match(t(), Evision.Mat.maybe_mat_in(), [{:masks, term()}] | nil) :: [Evision.DMatch.t()] | {:error, String.t()}
@spec match(t(), Evision.CUDA.GpuMat.t(), [{:masks, term()}] | nil) :: [Evision.DMatch.t()] | {:error, String.t()}
@spec match(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) :: [Evision.DMatch.t()] | {:error, String.t()}
@spec match(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) :: [Evision.DMatch.t()] | {:error, String.t()}
Variant 1:
Finds the best match for each descriptor from a query set (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
Return
matches:
[Evision.DMatch]
.Matches. If a query descriptor is masked out in mask , no match is added for this descriptor. So, matches size may be smaller than the query descriptors count.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 2:
Finds the best match for each descriptor from a query set (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
Return
matches:
[Evision.DMatch]
.Matches. If a query descriptor is masked out in mask , no match is added for this descriptor. So, matches size may be smaller than the query descriptors count.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 3:
match
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
.
Return
- matches:
[Evision.DMatch]
Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches
Variant 4:
match
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
.
Return
- matches:
[Evision.DMatch]
Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches
@spec match( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil ) :: [Evision.DMatch.t()] | {:error, String.t()}
@spec match( t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), [{:mask, term()}] | nil ) :: [Evision.DMatch.t()] | {:error, String.t()}
Variant 1:
Finds the best match for each descriptor from a query set (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
Return
matches:
[Evision.DMatch]
.Matches. If a query descriptor is masked out in mask , no match is added for this descriptor. So, matches size may be smaller than the query descriptors count.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 2:
Finds the best match for each descriptor from a query set (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
Return
matches:
[Evision.DMatch]
.Matches. If a query descriptor is masked out in mask , no match is added for this descriptor. So, matches size may be smaller than the query descriptors count.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
@spec matchAsync(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
@spec matchAsync(t(), Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
matchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.Mat.t()
.
Has overloading in C++
Python prototype (for reference only):
matchAsync(queryDescriptors[, matches[, masks[, stream]]]) -> matches
Variant 2:
matchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.CUDA.GpuMat.t()
.
Has overloading in C++
Python prototype (for reference only):
matchAsync(queryDescriptors[, matches[, masks[, stream]]]) -> matches
@spec matchAsync( t(), Evision.Mat.maybe_mat_in(), [masks: term(), stream: term()] | nil ) :: Evision.Mat.t() | {:error, String.t()}
@spec matchAsync(t(), Evision.CUDA.GpuMat.t(), [masks: term(), stream: term()] | nil) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
@spec matchAsync(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
@spec matchAsync(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
Finds the best match for each descriptor from a query set (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.Mat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
matchAsync(queryDescriptors, trainDescriptors[, matches[, mask[, stream]]]) -> matches
Variant 2:
Finds the best match for each descriptor from a query set (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.CUDA.GpuMat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
matchAsync(queryDescriptors, trainDescriptors[, matches[, mask[, stream]]]) -> matches
Variant 3:
matchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.Mat.t()
.
Has overloading in C++
Python prototype (for reference only):
matchAsync(queryDescriptors[, matches[, masks[, stream]]]) -> matches
Variant 4:
matchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.CUDA.GpuMat.t()
.
Has overloading in C++
Python prototype (for reference only):
matchAsync(queryDescriptors[, matches[, masks[, stream]]]) -> matches
@spec matchAsync( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [mask: term(), stream: term()] | nil ) :: Evision.Mat.t() | {:error, String.t()}
@spec matchAsync( t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), [mask: term(), stream: term()] | nil ) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
Finds the best match for each descriptor from a query set (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.Mat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
matchAsync(queryDescriptors, trainDescriptors[, matches[, mask[, stream]]]) -> matches
Variant 2:
Finds the best match for each descriptor from a query set (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.CUDA.GpuMat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
matchAsync(queryDescriptors, trainDescriptors[, matches[, mask[, stream]]]) -> matches
@spec matchConvert(t(), Evision.Mat.maybe_mat_in()) :: [Evision.DMatch.t()] | {:error, String.t()}
@spec matchConvert(t(), Evision.CUDA.GpuMat.t()) :: [Evision.DMatch.t()] | {:error, String.t()}
Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.Mat
.Matches, returned from DescriptorMatcher::matchAsync.
Return
matches:
[Evision.DMatch]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::matchAsync to get final result. Call this method only after DescriptorMatcher::matchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
matchConvert(gpu_matches) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.CUDA.GpuMat.t()
.Matches, returned from DescriptorMatcher::matchAsync.
Return
matches:
[Evision.DMatch]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::matchAsync to get final result. Call this method only after DescriptorMatcher::matchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
matchConvert(gpu_matches) -> matches
@spec radiusMatch(t(), Evision.Mat.maybe_mat_in(), number()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec radiusMatch(t(), Evision.CUDA.GpuMat.t(), number()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
radiusMatch
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
- maxDistance:
float
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - compactResult:
bool
.
Return
- matches:
[[Evision.DMatch]]
Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches
Variant 2:
radiusMatch
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
- maxDistance:
float
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - compactResult:
bool
.
Return
- matches:
[[Evision.DMatch]]
Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches
@spec radiusMatch( t(), Evision.Mat.maybe_mat_in(), number(), [compactResult: term(), masks: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec radiusMatch( t(), Evision.CUDA.GpuMat.t(), number(), [compactResult: term(), masks: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec radiusMatch( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), number() ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec radiusMatch(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), number()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
maxDistance:
float
.Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Found matches.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 2:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
maxDistance:
float
.Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Found matches.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 3:
radiusMatch
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
- maxDistance:
float
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - compactResult:
bool
.
Return
- matches:
[[Evision.DMatch]]
Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches
Variant 4:
radiusMatch
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
- maxDistance:
float
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - compactResult:
bool
.
Return
- matches:
[[Evision.DMatch]]
Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches
radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)
View Source@spec radiusMatch( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), number(), [compactResult: term(), mask: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec radiusMatch( t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), number(), [compactResult: term(), mask: term()] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
maxDistance:
float
.Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Found matches.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 2:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
maxDistance:
float
.Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Found matches.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
@spec radiusMatchAsync(t(), Evision.Mat.maybe_mat_in(), number()) :: Evision.Mat.t() | {:error, String.t()}
@spec radiusMatchAsync(t(), Evision.CUDA.GpuMat.t(), number()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
radiusMatchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
- maxDistance:
float
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.Mat.t()
.
Has overloading in C++
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, maxDistance[, matches[, masks[, stream]]]) -> matches
Variant 2:
radiusMatchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
- maxDistance:
float
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.CUDA.GpuMat.t()
.
Has overloading in C++
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, maxDistance[, matches[, masks[, stream]]]) -> matches
@spec radiusMatchAsync( t(), Evision.Mat.maybe_mat_in(), number(), [masks: term(), stream: term()] | nil ) :: Evision.Mat.t() | {:error, String.t()}
@spec radiusMatchAsync( t(), Evision.CUDA.GpuMat.t(), number(), [masks: term(), stream: term()] | nil ) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
@spec radiusMatchAsync( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), number() ) :: Evision.Mat.t() | {:error, String.t()}
@spec radiusMatchAsync( t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), number() ) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
maxDistance:
float
.Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.Mat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, trainDescriptors, maxDistance[, matches[, mask[, stream]]]) -> matches
Variant 2:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
maxDistance:
float
.Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.CUDA.GpuMat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, trainDescriptors, maxDistance[, matches[, mask[, stream]]]) -> matches
Variant 3:
radiusMatchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.Mat
- maxDistance:
float
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.Mat.t()
.
Has overloading in C++
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, maxDistance[, matches[, masks[, stream]]]) -> matches
Variant 4:
radiusMatchAsync
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- queryDescriptors:
Evision.CUDA.GpuMat.t()
- maxDistance:
float
Keyword Arguments
- masks:
[Evision.CUDA.GpuMat]
. - stream:
Evision.CUDA.Stream.t()
.
Return
- matches:
Evision.CUDA.GpuMat.t()
.
Has overloading in C++
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, maxDistance[, matches[, masks[, stream]]]) -> matches
radiusMatchAsync(self, queryDescriptors, trainDescriptors, maxDistance, opts)
View Source@spec radiusMatchAsync( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), number(), [mask: term(), stream: term()] | nil ) :: Evision.Mat.t() | {:error, String.t()}
@spec radiusMatchAsync( t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), number(), [mask: term(), stream: term()] | nil ) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.Mat
.Query set of descriptors.
trainDescriptors:
Evision.Mat
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
maxDistance:
float
.Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
Keyword Arguments
mask:
Evision.Mat
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.Mat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, trainDescriptors, maxDistance[, matches[, mask[, stream]]]) -> matches
Variant 2:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
queryDescriptors:
Evision.CUDA.GpuMat.t()
.Query set of descriptors.
trainDescriptors:
Evision.CUDA.GpuMat.t()
.Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
maxDistance:
float
.Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
Keyword Arguments
mask:
Evision.CUDA.GpuMat.t()
.Mask specifying permissible matches between an input query and train matrices of descriptors.
stream:
Evision.CUDA.Stream.t()
.CUDA stream.
Return
matches:
Evision.CUDA.GpuMat.t()
.Matches array stored in GPU memory. Internal representation is not defined. Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, trainDescriptors, maxDistance[, matches[, mask[, stream]]]) -> matches
@spec radiusMatchConvert(t(), Evision.Mat.maybe_mat_in()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec radiusMatchConvert(t(), Evision.CUDA.GpuMat.t()) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.Mat
.Matches, returned from DescriptorMatcher::radiusMatchAsync.
Keyword Arguments
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result. Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
radiusMatchConvert(gpu_matches[, compactResult]) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.CUDA.GpuMat.t()
.Matches, returned from DescriptorMatcher::radiusMatchAsync.
Keyword Arguments
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result. Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
radiusMatchConvert(gpu_matches[, compactResult]) -> matches
@spec radiusMatchConvert( t(), Evision.Mat.maybe_mat_in(), [{:compactResult, term()}] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
@spec radiusMatchConvert( t(), Evision.CUDA.GpuMat.t(), [{:compactResult, term()}] | nil ) :: [[Evision.DMatch.t()]] | {:error, String.t()}
Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.Mat
.Matches, returned from DescriptorMatcher::radiusMatchAsync.
Keyword Arguments
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result. Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
radiusMatchConvert(gpu_matches[, compactResult]) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
self:
Evision.CUDA.DescriptorMatcher.t()
gpu_matches:
Evision.CUDA.GpuMat.t()
.Matches, returned from DescriptorMatcher::radiusMatchAsync.
Keyword Arguments
compactResult:
bool
.Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors.
Return
matches:
[[Evision.DMatch]]
.Vector of DMatch objects.
The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result. Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
radiusMatchConvert(gpu_matches[, compactResult]) -> matches
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
save
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
@spec train(Keyword.t()) :: any() | {:error, String.t()}
@spec train(t()) :: t() | {:error, String.t()}
Trains a descriptor matcher.
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method train() is run every time before matching.
Python prototype (for reference only):
train() -> None
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.CUDA.DescriptorMatcher.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None