View Source Evision.CUDA.HoughSegmentDetector (Evision v0.1.34)
Summary
Functions
Clears the algorithm state
Variant 1:
Finds line segments in a binary image using the probabilistic Hough transform.
Variant 1:
Finds line segments in a binary image using the probabilistic Hough transform.
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
getDefaultName
getMaxLineGap
getMaxLines
getMinLineLength
getRho
getTheta
getThreshold
Reads algorithm parameters from a file storage
save
setMaxLineGap
setMaxLines
setMinLineLength
setRho
setTheta
setThreshold
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.CUDA.HoughSegmentDetector{ref: reference()}
Type that represents an CUDA.HoughSegmentDetector
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
Clears the algorithm state
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Python prototype (for reference only):
clear() -> None
@spec detect(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
@spec detect(t(), Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
self:
Evision.CUDA.HoughSegmentDetector.t()
src:
Evision.Mat.t()
.8-bit, single-channel binary source image.
Keyword Arguments
stream:
Evision.CUDA.Stream.t()
.Stream for the asynchronous version.
Return
lines:
Evision.Mat.t()
.Output vector of lines. Each line is represented by a 4-element vector \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected line segment.
@sa HoughLinesP
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines
Variant 2:
Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
self:
Evision.CUDA.HoughSegmentDetector.t()
src:
Evision.CUDA.GpuMat.t()
.8-bit, single-channel binary source image.
Keyword Arguments
stream:
Evision.CUDA.Stream.t()
.Stream for the asynchronous version.
Return
lines:
Evision.CUDA.GpuMat.t()
.Output vector of lines. Each line is represented by a 4-element vector \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected line segment.
@sa HoughLinesP
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines
@spec detect(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
@spec detect(t(), Evision.CUDA.GpuMat.t(), [{atom(), term()}, ...] | nil) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}
Variant 1:
Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
self:
Evision.CUDA.HoughSegmentDetector.t()
src:
Evision.Mat.t()
.8-bit, single-channel binary source image.
Keyword Arguments
stream:
Evision.CUDA.Stream.t()
.Stream for the asynchronous version.
Return
lines:
Evision.Mat.t()
.Output vector of lines. Each line is represented by a 4-element vector \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected line segment.
@sa HoughLinesP
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines
Variant 2:
Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
self:
Evision.CUDA.HoughSegmentDetector.t()
src:
Evision.CUDA.GpuMat.t()
.8-bit, single-channel binary source image.
Keyword Arguments
stream:
Evision.CUDA.Stream.t()
.Stream for the asynchronous version.
Return
lines:
Evision.CUDA.GpuMat.t()
.Output vector of lines. Each line is represented by a 4-element vector \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected line segment.
@sa HoughLinesP
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
getDefaultName
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
getMaxLineGap
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Return
- retval:
int
Python prototype (for reference only):
getMaxLineGap() -> retval
getMaxLines
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Return
- retval:
int
Python prototype (for reference only):
getMaxLines() -> retval
getMinLineLength
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Return
- retval:
int
Python prototype (for reference only):
getMinLineLength() -> retval
getRho
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Return
- retval:
float
Python prototype (for reference only):
getRho() -> retval
getTheta
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Return
- retval:
float
Python prototype (for reference only):
getTheta() -> retval
getThreshold
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
Return
- retval:
int
Python prototype (for reference only):
getThreshold() -> retval
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- fn_:
Evision.FileNode.t()
Python prototype (for reference only):
read(fn_) -> None
save
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
setMaxLineGap
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- maxLineGap:
int
Python prototype (for reference only):
setMaxLineGap(maxLineGap) -> None
setMaxLines
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- maxLines:
int
Python prototype (for reference only):
setMaxLines(maxLines) -> None
setMinLineLength
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- minLineLength:
int
Python prototype (for reference only):
setMinLineLength(minLineLength) -> None
setRho
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- rho:
float
Python prototype (for reference only):
setRho(rho) -> None
setTheta
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- theta:
float
Python prototype (for reference only):
setTheta(theta) -> None
setThreshold
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- threshold:
int
Python prototype (for reference only):
setThreshold(threshold) -> None
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- fs:
Evision.FileStorage.t()
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.CUDA.HoughSegmentDetector.t()
- fs:
Evision.FileStorage.t()
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None