View Source Evision.XImgProc.ScanSegment (Evision v0.1.37)

Summary

Types

t()

Type that represents an XImgProc.ScanSegment struct.

Functions

Clears the algorithm state

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

getDefaultName

Returns the mask of the superpixel segmentation stored in the ScanSegment object.

Returns the mask of the superpixel segmentation stored in the ScanSegment object.

Returns the segmentation labeling of the image.

Returns the segmentation labeling of the image.

Returns the actual superpixel segmentation from the last image processed using iterate.

Calculates the superpixel segmentation on a given image with the initialized parameters in the ScanSegment object.

Reads algorithm parameters from a file storage

Stores algorithm parameters in a file storage

Types

@type t() :: %Evision.XImgProc.ScanSegment{ref: reference()}

Type that represents an XImgProc.ScanSegment struct.

  • ref. reference()

    The underlying erlang resource variable.

Functions

@spec clear(t()) :: t() | {:error, String.t()}

Clears the algorithm state

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()

Python prototype (for reference only):

clear() -> None
@spec empty(t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
Return
  • retval: bool

Python prototype (for reference only):

empty() -> retval
@spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
Return

Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.

Python prototype (for reference only):

getDefaultName() -> retval
Link to this function

getLabelContourMask(self)

View Source
@spec getLabelContourMask(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in the ScanSegment object.

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
Keyword Arguments
  • thick_line: bool.

    If false, the border is only one pixel wide, otherwise all pixels at the border are masked.

Return
  • image: Evision.Mat.t().

    Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border, and 0 otherwise.

The function return the boundaries of the superpixel segmentation.

Python prototype (for reference only):

getLabelContourMask([, image[, thick_line]]) -> image
Link to this function

getLabelContourMask(self, opts)

View Source
@spec getLabelContourMask(t(), [{atom(), term()}, ...] | nil) ::
  Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in the ScanSegment object.

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
Keyword Arguments
  • thick_line: bool.

    If false, the border is only one pixel wide, otherwise all pixels at the border are masked.

Return
  • image: Evision.Mat.t().

    Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border, and 0 otherwise.

The function return the boundaries of the superpixel segmentation.

Python prototype (for reference only):

getLabelContourMask([, image[, thick_line]]) -> image
@spec getLabels(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
Return
  • labels_out: Evision.Mat.t().

    Return: A CV_32UC1 integer array containing the labels of the superpixel segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.

Python prototype (for reference only):

getLabels([, labels_out]) -> labels_out
@spec getLabels(t(), [{atom(), term()}, ...] | nil) ::
  Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
Return
  • labels_out: Evision.Mat.t().

    Return: A CV_32UC1 integer array containing the labels of the superpixel segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.

Python prototype (for reference only):

getLabels([, labels_out]) -> labels_out
Link to this function

getNumberOfSuperpixels(self)

View Source
@spec getNumberOfSuperpixels(t()) :: integer() | {:error, String.t()}

Returns the actual superpixel segmentation from the last image processed using iterate.

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
Return
  • retval: int

Returns zero if no image has been processed.

Python prototype (for reference only):

getNumberOfSuperpixels() -> retval
@spec iterate(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Calculates the superpixel segmentation on a given image with the initialized parameters in the ScanSegment object.

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()

  • img: Evision.Mat.t().

    Input image. Supported format: CV_8UC3. Image size must match with the initialized image size with the function createScanSegment(). It MUST be in Lab color space.

This function can be called again for other images without the need of initializing the algorithm with createScanSegment(). This save the computational cost of allocating memory for all the structures of the algorithm.

Python prototype (for reference only):

iterate(img) -> None
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

Reads algorithm parameters from a file storage

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
  • fn_: Evision.FileNode.t()

Python prototype (for reference only):

read(fn_) -> None
@spec save(t(), binary()) :: t() | {:error, String.t()}

save

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
  • filename: String

Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).

Python prototype (for reference only):

save(filename) -> None
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}

Stores algorithm parameters in a file storage

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
  • fs: Evision.FileStorage.t()

Python prototype (for reference only):

write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}

write

Positional Arguments
  • self: Evision.XImgProc.ScanSegment.t()
  • fs: Evision.FileStorage.t()
  • name: String

Has overloading in C++

Python prototype (for reference only):

write(fs, name) -> None