View Source Evision.Face.LBPHFaceRecognizer (Evision v0.1.34)
Summary
Functions
create
create
getGridX
getGridY
getHistograms
getLabels
getNeighbors
getRadius
getThreshold
setGridX
setGridY
setNeighbors
setRadius
setThreshold
Types
@type t() :: %Evision.Face.LBPHFaceRecognizer{ref: reference()}
Type that represents an Face.LBPHFaceRecognizer
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
create
Keyword Arguments
radius:
int
.The radius used for building the Circular Local Binary Pattern. The greater the radius, the smoother the image but more spatial information you can get.
neighbors:
int
.The number of sample points to build a Circular Local Binary Pattern from. An appropriate value is to use
8
sample points. Keep in mind: the more sample points you include, the higher the computational cost.grid_x:
int
.The number of cells in the horizontal direction, 8 is a common value used in publications. The more cells, the finer the grid, the higher the dimensionality of the resulting feature vector.
grid_y:
int
.The number of cells in the vertical direction, 8 is a common value used in publications. The more cells, the finer the grid, the higher the dimensionality of the resulting feature vector.
threshold:
double
.The threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1.
Return
- retval:
LBPHFaceRecognizer
Notes:
The Circular Local Binary Patterns (used in training and prediction) expect the data given as grayscale images, use cvtColor to convert between the color spaces.
This model supports updating.
Model internal data:
radius see LBPHFaceRecognizer::create.
neighbors see LBPHFaceRecognizer::create.
grid_x see LLBPHFaceRecognizer::create.
grid_y see LBPHFaceRecognizer::create.
threshold see LBPHFaceRecognizer::create.
histograms Local Binary Patterns Histograms calculated from the given training data (empty if none was given).
labels Labels corresponding to the calculated Local Binary Patterns Histograms.
Python prototype (for reference only):
create([, radius[, neighbors[, grid_x[, grid_y[, threshold]]]]]) -> retval
create
Keyword Arguments
radius:
int
.The radius used for building the Circular Local Binary Pattern. The greater the radius, the smoother the image but more spatial information you can get.
neighbors:
int
.The number of sample points to build a Circular Local Binary Pattern from. An appropriate value is to use
8
sample points. Keep in mind: the more sample points you include, the higher the computational cost.grid_x:
int
.The number of cells in the horizontal direction, 8 is a common value used in publications. The more cells, the finer the grid, the higher the dimensionality of the resulting feature vector.
grid_y:
int
.The number of cells in the vertical direction, 8 is a common value used in publications. The more cells, the finer the grid, the higher the dimensionality of the resulting feature vector.
threshold:
double
.The threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1.
Return
- retval:
LBPHFaceRecognizer
Notes:
The Circular Local Binary Patterns (used in training and prediction) expect the data given as grayscale images, use cvtColor to convert between the color spaces.
This model supports updating.
Model internal data:
radius see LBPHFaceRecognizer::create.
neighbors see LBPHFaceRecognizer::create.
grid_x see LLBPHFaceRecognizer::create.
grid_y see LBPHFaceRecognizer::create.
threshold see LBPHFaceRecognizer::create.
histograms Local Binary Patterns Histograms calculated from the given training data (empty if none was given).
labels Labels corresponding to the calculated Local Binary Patterns Histograms.
Python prototype (for reference only):
create([, radius[, neighbors[, grid_x[, grid_y[, threshold]]]]]) -> retval
getGridX
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
Return
- retval:
int
@see setGridX/2
Python prototype (for reference only):
getGridX() -> retval
getGridY
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
Return
- retval:
int
@see setGridY/2
Python prototype (for reference only):
getGridY() -> retval
@spec getHistograms(t()) :: [Evision.Mat.t()] | {:error, String.t()}
getHistograms
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
Return
- retval:
[Evision.Mat]
Python prototype (for reference only):
getHistograms() -> retval
@spec getLabels(t()) :: Evision.Mat.t() | {:error, String.t()}
getLabels
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
Return
- retval:
Evision.Mat.t()
Python prototype (for reference only):
getLabels() -> retval
getNeighbors
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
Return
- retval:
int
@see setNeighbors/2
Python prototype (for reference only):
getNeighbors() -> retval
getRadius
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
Return
- retval:
int
@see setRadius/2
Python prototype (for reference only):
getRadius() -> retval
getThreshold
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
Return
- retval:
double
@see setThreshold/2
Python prototype (for reference only):
getThreshold() -> retval
setGridX
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
- val:
int
@see getGridX/1
Python prototype (for reference only):
setGridX(val) -> None
setGridY
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
- val:
int
@see getGridY/1
Python prototype (for reference only):
setGridY(val) -> None
setNeighbors
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
- val:
int
@see getNeighbors/1
Python prototype (for reference only):
setNeighbors(val) -> None
setRadius
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
- val:
int
@see getRadius/1
Python prototype (for reference only):
setRadius(val) -> None
setThreshold
Positional Arguments
- self:
Evision.Face.LBPHFaceRecognizer.t()
- val:
double
@see getThreshold/1
Python prototype (for reference only):
setThreshold(val) -> None