View Source Evision.Quality.QualityBRISQUE (Evision v0.2.9)
Summary
Functions
Computes BRISQUE quality score for input image
static method for computing quality
static method for computing image features used by the BRISQUE algorithm
static method for computing image features used by the BRISQUE algorithm
Variant 1:
Create an object which calculates quality
Types
@type t() :: %Evision.Quality.QualityBRISQUE{ref: reference()}
Type that represents an Quality.QualityBRISQUE
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec compute(t(), Evision.Mat.maybe_mat_in()) :: Evision.scalar() | {:error, String.t()}
Computes BRISQUE quality score for input image
Positional Arguments
self:
Evision.Quality.QualityBRISQUE.t()
img:
Evision.Mat
.Image for which to compute quality
Return
- retval:
Evision.scalar().t()
@returns cv::Scalar with the score in the first element. The score ranges from 0 (best quality) to 100 (worst quality)
Python prototype (for reference only):
compute(img) -> retval
@spec compute(t(), Evision.Mat.maybe_mat_in(), binary(), binary()) :: Evision.scalar() | {:error, String.t()}
static method for computing quality
Positional Arguments
self:
Evision.Quality.QualityBRISQUE.t()
img:
Evision.Mat
.image for which to compute quality
model_file_path:
String
.cv::String which contains a path to the BRISQUE model data, eg. /path/to/brisque_model_live.yml
range_file_path:
String
.cv::String which contains a path to the BRISQUE range data, eg. /path/to/brisque_range_live.yml
Return
- retval:
Evision.scalar().t()
@returns cv::Scalar with the score in the first element. The score ranges from 0 (best quality) to 100 (worst quality)
Python prototype (for reference only):
compute(img, model_file_path, range_file_path) -> retval
@spec computeFeatures(Keyword.t()) :: any() | {:error, String.t()}
@spec computeFeatures(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
static method for computing image features used by the BRISQUE algorithm
Positional Arguments
img:
Evision.Mat
.image (BGR(A) or grayscale) for which to compute features
Return
features:
Evision.Mat.t()
.output row vector of features to cv::Mat or cv::UMat
Python prototype (for reference only):
computeFeatures(img[, features]) -> features
@spec computeFeatures(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
static method for computing image features used by the BRISQUE algorithm
Positional Arguments
img:
Evision.Mat
.image (BGR(A) or grayscale) for which to compute features
Return
features:
Evision.Mat.t()
.output row vector of features to cv::Mat or cv::UMat
Python prototype (for reference only):
computeFeatures(img[, features]) -> features
@spec create(Evision.ML.SVM.t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}
@spec create(binary(), binary()) :: t() | {:error, String.t()}
Variant 1:
Create an object which calculates quality
Positional Arguments
model:
ml::SVM
.cv::Ptr<cv::ml::SVM> which contains a loaded BRISQUE model
range:
Evision.Mat
.cv::Mat which contains BRISQUE range data
Return
- retval:
QualityBRISQUE
Python prototype (for reference only):
create(model, range) -> retval
Variant 2:
Create an object which calculates quality
Positional Arguments
model_file_path:
String
.cv::String which contains a path to the BRISQUE model data, eg. /path/to/brisque_model_live.yml
range_file_path:
String
.cv::String which contains a path to the BRISQUE range data, eg. /path/to/brisque_range_live.yml
Return
- retval:
QualityBRISQUE
Python prototype (for reference only):
create(model_file_path, range_file_path) -> retval