View Source Evision.XImgProc.DisparityFilter (Evision v0.2.9)

Summary

Types

t()

Type that represents an XImgProc.DisparityFilter struct.

Functions

Clears the algorithm state

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

Apply filtering to the disparity map.

Apply filtering to the disparity map.

Reads algorithm parameters from a file storage

Stores algorithm parameters in a file storage

Types

@type t() :: %Evision.XImgProc.DisparityFilter{ref: reference()}

Type that represents an XImgProc.DisparityFilter struct.

  • ref. reference()

    The underlying erlang resource variable.

Functions

@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}

Clears the algorithm state

Positional Arguments
  • self: Evision.XImgProc.DisparityFilter.t()

Python prototype (for reference only):

clear() -> None
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

Positional Arguments
  • self: Evision.XImgProc.DisparityFilter.t()
Return
  • retval: bool

Python prototype (for reference only):

empty() -> retval
@spec filter(Keyword.t()) :: any() | {:error, String.t()}
Link to this function

filter(self, disparity_map_left, left_view)

View Source
@spec filter(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
  Evision.Mat.t() | {:error, String.t()}

Apply filtering to the disparity map.

Positional Arguments
  • self: Evision.XImgProc.DisparityFilter.t()

  • disparity_map_left: Evision.Mat.

    disparity map of the left view, 1 channel, CV_16S type. Implicitly assumes that disparity values are scaled by 16 (one-pixel disparity corresponds to the value of 16 in the disparity map). Disparity map can have any resolution, it will be automatically resized to fit left_view resolution.

  • left_view: Evision.Mat.

    left view of the original stereo-pair to guide the filtering process, 8-bit single-channel or three-channel image.

Keyword Arguments
  • disparity_map_right: Evision.Mat.

    optional argument, some implementations might also use the disparity map of the right view to compute confidence maps, for instance.

  • rOI: Rect.

    region of the disparity map to filter. Optional, usually it should be set automatically.

  • right_view: Evision.Mat.

    optional argument, some implementations might also use the right view of the original stereo-pair.

Return
  • filtered_disparity_map: Evision.Mat.t().

    output disparity map.

Python prototype (for reference only):

filter(disparity_map_left, left_view[, filtered_disparity_map[, disparity_map_right[, ROI[, right_view]]]]) -> filtered_disparity_map
Link to this function

filter(self, disparity_map_left, left_view, opts)

View Source
@spec filter(
  t(),
  Evision.Mat.maybe_mat_in(),
  Evision.Mat.maybe_mat_in(),
  [disparity_map_right: term(), rOI: term(), right_view: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Apply filtering to the disparity map.

Positional Arguments
  • self: Evision.XImgProc.DisparityFilter.t()

  • disparity_map_left: Evision.Mat.

    disparity map of the left view, 1 channel, CV_16S type. Implicitly assumes that disparity values are scaled by 16 (one-pixel disparity corresponds to the value of 16 in the disparity map). Disparity map can have any resolution, it will be automatically resized to fit left_view resolution.

  • left_view: Evision.Mat.

    left view of the original stereo-pair to guide the filtering process, 8-bit single-channel or three-channel image.

Keyword Arguments
  • disparity_map_right: Evision.Mat.

    optional argument, some implementations might also use the disparity map of the right view to compute confidence maps, for instance.

  • rOI: Rect.

    region of the disparity map to filter. Optional, usually it should be set automatically.

  • right_view: Evision.Mat.

    optional argument, some implementations might also use the right view of the original stereo-pair.

Return
  • filtered_disparity_map: Evision.Mat.t().

    output disparity map.

Python prototype (for reference only):

filter(disparity_map_left, left_view[, filtered_disparity_map[, disparity_map_right[, ROI[, right_view]]]]) -> filtered_disparity_map
Link to this function

getDefaultName(named_args)

View Source
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName

Positional Arguments
  • self: Evision.XImgProc.DisparityFilter.t()
Return

Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.

Python prototype (for reference only):

getDefaultName() -> retval
@spec read(Keyword.t()) :: any() | {:error, String.t()}
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

Reads algorithm parameters from a file storage

Positional Arguments

Python prototype (for reference only):

read(fn) -> None
@spec save(Keyword.t()) :: any() | {:error, String.t()}
@spec save(t(), binary()) :: t() | {:error, String.t()}

save

Positional Arguments
  • self: Evision.XImgProc.DisparityFilter.t()
  • filename: String

Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).

Python prototype (for reference only):

save(filename) -> None
@spec write(Keyword.t()) :: any() | {:error, String.t()}
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}

Stores algorithm parameters in a file storage

Positional Arguments

Python prototype (for reference only):

write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}

write

Positional Arguments

Has overloading in C++

Python prototype (for reference only):

write(fs, name) -> None