View Source Evision.BgSegm (Evision v0.2.9)
Summary
Functions
Creates a CNT Background Subtractor
Creates a CNT Background Subtractor
Creates a GMG Background Subtractor
Creates a GMG Background Subtractor
Creates an instance of BackgroundSubtractorGSOC algorithm.
Creates an instance of BackgroundSubtractorGSOC algorithm.
Creates an instance of BackgroundSubtractorLSBP algorithm.
Creates an instance of BackgroundSubtractorLSBP algorithm.
Creates mixture-of-gaussian background subtractor
Creates mixture-of-gaussian background subtractor
Creates an instance of SyntheticSequenceGenerator.
Creates an instance of SyntheticSequenceGenerator.
Types
@type t() :: %Evision.BgSegm{ref: reference()}
Type that represents an BgSegm
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec createBackgroundSubtractorCNT() :: Evision.BgSegm.BackgroundSubtractorCNT.t() | {:error, String.t()}
Creates a CNT Background Subtractor
Keyword Arguments
minPixelStability:
integer()
.number of frames with same pixel color to consider stable
useHistory:
bool
.determines if we're giving a pixel credit for being stable for a long time
maxPixelStability:
integer()
.maximum allowed credit for a pixel in history
isParallel:
bool
.determines if we're parallelizing the algorithm
Return
- retval:
Evision.BgSegm.BackgroundSubtractorCNT.t()
Python prototype (for reference only):
createBackgroundSubtractorCNT([, minPixelStability[, useHistory[, maxPixelStability[, isParallel]]]]) -> retval
@spec createBackgroundSubtractorCNT(Keyword.t()) :: any() | {:error, String.t()}
@spec createBackgroundSubtractorCNT( [ isParallel: term(), maxPixelStability: term(), minPixelStability: term(), useHistory: term() ] | nil ) :: Evision.BgSegm.BackgroundSubtractorCNT.t() | {:error, String.t()}
Creates a CNT Background Subtractor
Keyword Arguments
minPixelStability:
integer()
.number of frames with same pixel color to consider stable
useHistory:
bool
.determines if we're giving a pixel credit for being stable for a long time
maxPixelStability:
integer()
.maximum allowed credit for a pixel in history
isParallel:
bool
.determines if we're parallelizing the algorithm
Return
- retval:
Evision.BgSegm.BackgroundSubtractorCNT.t()
Python prototype (for reference only):
createBackgroundSubtractorCNT([, minPixelStability[, useHistory[, maxPixelStability[, isParallel]]]]) -> retval
@spec createBackgroundSubtractorGMG() :: Evision.BgSegm.BackgroundSubtractorGMG.t() | {:error, String.t()}
Creates a GMG Background Subtractor
Keyword Arguments
initializationFrames:
integer()
.number of frames used to initialize the background models.
decisionThreshold:
double
.Threshold value, above which it is marked foreground, else background.
Return
- retval:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Python prototype (for reference only):
createBackgroundSubtractorGMG([, initializationFrames[, decisionThreshold]]) -> retval
@spec createBackgroundSubtractorGMG(Keyword.t()) :: any() | {:error, String.t()}
@spec createBackgroundSubtractorGMG( [decisionThreshold: term(), initializationFrames: term()] | nil ) :: Evision.BgSegm.BackgroundSubtractorGMG.t() | {:error, String.t()}
Creates a GMG Background Subtractor
Keyword Arguments
initializationFrames:
integer()
.number of frames used to initialize the background models.
decisionThreshold:
double
.Threshold value, above which it is marked foreground, else background.
Return
- retval:
Evision.BgSegm.BackgroundSubtractorGMG.t()
Python prototype (for reference only):
createBackgroundSubtractorGMG([, initializationFrames[, decisionThreshold]]) -> retval
@spec createBackgroundSubtractorGSOC() :: Evision.BgSegm.BackgroundSubtractorGSOC.t() | {:error, String.t()}
Creates an instance of BackgroundSubtractorGSOC algorithm.
Keyword Arguments
mc:
integer()
.Whether to use camera motion compensation.
nSamples:
integer()
.Number of samples to maintain at each point of the frame.
replaceRate:
float
.Probability of replacing the old sample - how fast the model will update itself.
propagationRate:
float
.Probability of propagating to neighbors.
hitsThreshold:
integer()
.How many positives the sample must get before it will be considered as a possible replacement.
alpha:
float
.Scale coefficient for threshold.
beta:
float
.Bias coefficient for threshold.
blinkingSupressionDecay:
float
.Blinking supression decay factor.
blinkingSupressionMultiplier:
float
.Blinking supression multiplier.
noiseRemovalThresholdFacBG:
float
.Strength of the noise removal for background points.
noiseRemovalThresholdFacFG:
float
.Strength of the noise removal for foreground points.
Return
- retval:
Evision.BgSegm.BackgroundSubtractorGSOC.t()
Implementation of the different yet better algorithm which is called GSOC, as it was implemented during GSOC and was not originated from any paper.
Python prototype (for reference only):
createBackgroundSubtractorGSOC([, mc[, nSamples[, replaceRate[, propagationRate[, hitsThreshold[, alpha[, beta[, blinkingSupressionDecay[, blinkingSupressionMultiplier[, noiseRemovalThresholdFacBG[, noiseRemovalThresholdFacFG]]]]]]]]]]]) -> retval
@spec createBackgroundSubtractorGSOC(Keyword.t()) :: any() | {:error, String.t()}
@spec createBackgroundSubtractorGSOC( [ alpha: term(), beta: term(), blinkingSupressionDecay: term(), blinkingSupressionMultiplier: term(), hitsThreshold: term(), mc: term(), nSamples: term(), noiseRemovalThresholdFacBG: term(), noiseRemovalThresholdFacFG: term(), propagationRate: term(), replaceRate: term() ] | nil ) :: Evision.BgSegm.BackgroundSubtractorGSOC.t() | {:error, String.t()}
Creates an instance of BackgroundSubtractorGSOC algorithm.
Keyword Arguments
mc:
integer()
.Whether to use camera motion compensation.
nSamples:
integer()
.Number of samples to maintain at each point of the frame.
replaceRate:
float
.Probability of replacing the old sample - how fast the model will update itself.
propagationRate:
float
.Probability of propagating to neighbors.
hitsThreshold:
integer()
.How many positives the sample must get before it will be considered as a possible replacement.
alpha:
float
.Scale coefficient for threshold.
beta:
float
.Bias coefficient for threshold.
blinkingSupressionDecay:
float
.Blinking supression decay factor.
blinkingSupressionMultiplier:
float
.Blinking supression multiplier.
noiseRemovalThresholdFacBG:
float
.Strength of the noise removal for background points.
noiseRemovalThresholdFacFG:
float
.Strength of the noise removal for foreground points.
Return
- retval:
Evision.BgSegm.BackgroundSubtractorGSOC.t()
Implementation of the different yet better algorithm which is called GSOC, as it was implemented during GSOC and was not originated from any paper.
Python prototype (for reference only):
createBackgroundSubtractorGSOC([, mc[, nSamples[, replaceRate[, propagationRate[, hitsThreshold[, alpha[, beta[, blinkingSupressionDecay[, blinkingSupressionMultiplier[, noiseRemovalThresholdFacBG[, noiseRemovalThresholdFacFG]]]]]]]]]]]) -> retval
@spec createBackgroundSubtractorLSBP() :: Evision.BgSegm.BackgroundSubtractorLSBP.t() | {:error, String.t()}
Creates an instance of BackgroundSubtractorLSBP algorithm.
Keyword Arguments
mc:
integer()
.Whether to use camera motion compensation.
nSamples:
integer()
.Number of samples to maintain at each point of the frame.
lSBPRadius:
integer()
.LSBP descriptor radius.
tlower:
float
.Lower bound for T-values. See @cite LGuo2016 for details.
tupper:
float
.Upper bound for T-values. See @cite LGuo2016 for details.
tinc:
float
.Increase step for T-values. See @cite LGuo2016 for details.
tdec:
float
.Decrease step for T-values. See @cite LGuo2016 for details.
rscale:
float
.Scale coefficient for threshold values.
rincdec:
float
.Increase/Decrease step for threshold values.
noiseRemovalThresholdFacBG:
float
.Strength of the noise removal for background points.
noiseRemovalThresholdFacFG:
float
.Strength of the noise removal for foreground points.
lSBPthreshold:
integer()
.Threshold for LSBP binary string.
minCount:
integer()
.Minimal number of matches for sample to be considered as foreground.
Return
- retval:
Evision.BgSegm.BackgroundSubtractorLSBP.t()
Background Subtraction using Local SVD Binary Pattern. More details about the algorithm can be found at @cite LGuo2016
Python prototype (for reference only):
createBackgroundSubtractorLSBP([, mc[, nSamples[, LSBPRadius[, Tlower[, Tupper[, Tinc[, Tdec[, Rscale[, Rincdec[, noiseRemovalThresholdFacBG[, noiseRemovalThresholdFacFG[, LSBPthreshold[, minCount]]]]]]]]]]]]]) -> retval
@spec createBackgroundSubtractorLSBP(Keyword.t()) :: any() | {:error, String.t()}
@spec createBackgroundSubtractorLSBP( [ lSBPRadius: term(), lSBPthreshold: term(), mc: term(), minCount: term(), nSamples: term(), noiseRemovalThresholdFacBG: term(), noiseRemovalThresholdFacFG: term(), rincdec: term(), rscale: term(), tdec: term(), tinc: term(), tlower: term(), tupper: term() ] | nil ) :: Evision.BgSegm.BackgroundSubtractorLSBP.t() | {:error, String.t()}
Creates an instance of BackgroundSubtractorLSBP algorithm.
Keyword Arguments
mc:
integer()
.Whether to use camera motion compensation.
nSamples:
integer()
.Number of samples to maintain at each point of the frame.
lSBPRadius:
integer()
.LSBP descriptor radius.
tlower:
float
.Lower bound for T-values. See @cite LGuo2016 for details.
tupper:
float
.Upper bound for T-values. See @cite LGuo2016 for details.
tinc:
float
.Increase step for T-values. See @cite LGuo2016 for details.
tdec:
float
.Decrease step for T-values. See @cite LGuo2016 for details.
rscale:
float
.Scale coefficient for threshold values.
rincdec:
float
.Increase/Decrease step for threshold values.
noiseRemovalThresholdFacBG:
float
.Strength of the noise removal for background points.
noiseRemovalThresholdFacFG:
float
.Strength of the noise removal for foreground points.
lSBPthreshold:
integer()
.Threshold for LSBP binary string.
minCount:
integer()
.Minimal number of matches for sample to be considered as foreground.
Return
- retval:
Evision.BgSegm.BackgroundSubtractorLSBP.t()
Background Subtraction using Local SVD Binary Pattern. More details about the algorithm can be found at @cite LGuo2016
Python prototype (for reference only):
createBackgroundSubtractorLSBP([, mc[, nSamples[, LSBPRadius[, Tlower[, Tupper[, Tinc[, Tdec[, Rscale[, Rincdec[, noiseRemovalThresholdFacBG[, noiseRemovalThresholdFacFG[, LSBPthreshold[, minCount]]]]]]]]]]]]]) -> retval
@spec createBackgroundSubtractorMOG() :: Evision.BgSegm.BackgroundSubtractorMOG.t() | {:error, String.t()}
Creates mixture-of-gaussian background subtractor
Keyword Arguments
history:
integer()
.Length of the history.
nmixtures:
integer()
.Number of Gaussian mixtures.
backgroundRatio:
double
.Background ratio.
noiseSigma:
double
.Noise strength (standard deviation of the brightness or each color channel). 0 means some automatic value.
Return
- retval:
Evision.BgSegm.BackgroundSubtractorMOG.t()
Python prototype (for reference only):
createBackgroundSubtractorMOG([, history[, nmixtures[, backgroundRatio[, noiseSigma]]]]) -> retval
@spec createBackgroundSubtractorMOG(Keyword.t()) :: any() | {:error, String.t()}
@spec createBackgroundSubtractorMOG( [ backgroundRatio: term(), history: term(), nmixtures: term(), noiseSigma: term() ] | nil ) :: Evision.BgSegm.BackgroundSubtractorMOG.t() | {:error, String.t()}
Creates mixture-of-gaussian background subtractor
Keyword Arguments
history:
integer()
.Length of the history.
nmixtures:
integer()
.Number of Gaussian mixtures.
backgroundRatio:
double
.Background ratio.
noiseSigma:
double
.Noise strength (standard deviation of the brightness or each color channel). 0 means some automatic value.
Return
- retval:
Evision.BgSegm.BackgroundSubtractorMOG.t()
Python prototype (for reference only):
createBackgroundSubtractorMOG([, history[, nmixtures[, backgroundRatio[, noiseSigma]]]]) -> retval
@spec createSyntheticSequenceGenerator( Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in() ) :: Evision.BgSegm.SyntheticSequenceGenerator.t() | {:error, String.t()}
Creates an instance of SyntheticSequenceGenerator.
Positional Arguments
background:
Evision.Mat
.Background image for object.
object:
Evision.Mat
.Object image which will move slowly over the background.
Keyword Arguments
amplitude:
double
.Amplitude of wave distortion applied to background.
wavelength:
double
.Length of waves in distortion applied to background.
wavespeed:
double
.How fast waves will move.
objspeed:
double
.How fast object will fly over background.
Return
- retval:
Evision.BgSegm.SyntheticSequenceGenerator.t()
Python prototype (for reference only):
createSyntheticSequenceGenerator(background, object[, amplitude[, wavelength[, wavespeed[, objspeed]]]]) -> retval
@spec createSyntheticSequenceGenerator( Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [amplitude: term(), objspeed: term(), wavelength: term(), wavespeed: term()] | nil ) :: Evision.BgSegm.SyntheticSequenceGenerator.t() | {:error, String.t()}
Creates an instance of SyntheticSequenceGenerator.
Positional Arguments
background:
Evision.Mat
.Background image for object.
object:
Evision.Mat
.Object image which will move slowly over the background.
Keyword Arguments
amplitude:
double
.Amplitude of wave distortion applied to background.
wavelength:
double
.Length of waves in distortion applied to background.
wavespeed:
double
.How fast waves will move.
objspeed:
double
.How fast object will fly over background.
Return
- retval:
Evision.BgSegm.SyntheticSequenceGenerator.t()
Python prototype (for reference only):
createSyntheticSequenceGenerator(background, object[, amplitude[, wavelength[, wavespeed[, objspeed]]]]) -> retval