View Source Evision.FaceRecognizerSF (Evision v0.2.11)
Summary
Functions
Aligns detected face with the source input image and crops it
Aligns detected face with the source input image and crops it
Creates an instance of this class with given parameters
Variant 1:
Creates an instance of this class from a buffer containing the model weights and configuration.
Creates an instance of this class from a buffer containing the model weights and configuration.
Extracts face feature from aligned image
Extracts face feature from aligned image
Calculates the distance between two face features
Calculates the distance between two face features
Types
@type t() :: %Evision.FaceRecognizerSF{ref: reference()}
Type that represents an FaceRecognizerSF
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec alignCrop(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Aligns detected face with the source input image and crops it
Positional Arguments
self:
Evision.FaceRecognizerSF.t()
src_img:
Evision.Mat
.input image
face_box:
Evision.Mat
.the detected face result from the input image
Return
aligned_img:
Evision.Mat.t()
.output aligned image
Python prototype (for reference only):
alignCrop(src_img, face_box[, aligned_img]) -> aligned_img
@spec alignCrop( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil ) :: Evision.Mat.t() | {:error, String.t()}
Aligns detected face with the source input image and crops it
Positional Arguments
self:
Evision.FaceRecognizerSF.t()
src_img:
Evision.Mat
.input image
face_box:
Evision.Mat
.the detected face result from the input image
Return
aligned_img:
Evision.Mat.t()
.output aligned image
Python prototype (for reference only):
alignCrop(src_img, face_box[, aligned_img]) -> aligned_img
Creates an instance of this class with given parameters
Positional Arguments
model:
String
.the path of the onnx model used for face recognition
config:
String
.the path to the config file for compability, which is not requested for ONNX models
Keyword Arguments
backend_id:
integer()
.the id of backend
target_id:
integer()
.the id of target device
Return
- retval:
Evision.FaceRecognizerSF.t()
Python prototype (for reference only):
create(model, config[, backend_id[, target_id]]) -> retval
@spec create(binary(), binary(), [backend_id: term(), target_id: term()] | nil) :: t() | {:error, String.t()}
@spec create(binary(), binary(), binary()) :: t() | {:error, String.t()}
Variant 1:
Creates an instance of this class from a buffer containing the model weights and configuration.
Positional Arguments
framework:
String
.Name of the framework (ONNX, etc.)
bufferModel:
[uchar]
.A buffer containing the binary model weights.
bufferConfig:
[uchar]
.A buffer containing the network configuration.
Keyword Arguments
backend_id:
integer()
.The id of the backend.
target_id:
integer()
.The id of the target device.
Return
- retval:
Evision.FaceRecognizerSF.t()
@return A pointer to the created instance of FaceRecognizerSF.
Python prototype (for reference only):
create(framework, bufferModel, bufferConfig[, backend_id[, target_id]]) -> retval
Variant 2:
Creates an instance of this class with given parameters
Positional Arguments
model:
String
.the path of the onnx model used for face recognition
config:
String
.the path to the config file for compability, which is not requested for ONNX models
Keyword Arguments
backend_id:
integer()
.the id of backend
target_id:
integer()
.the id of target device
Return
- retval:
Evision.FaceRecognizerSF.t()
Python prototype (for reference only):
create(model, config[, backend_id[, target_id]]) -> retval
@spec create( binary(), binary(), binary(), [backend_id: term(), target_id: term()] | nil ) :: t() | {:error, String.t()}
Creates an instance of this class from a buffer containing the model weights and configuration.
Positional Arguments
framework:
String
.Name of the framework (ONNX, etc.)
bufferModel:
[uchar]
.A buffer containing the binary model weights.
bufferConfig:
[uchar]
.A buffer containing the network configuration.
Keyword Arguments
backend_id:
integer()
.The id of the backend.
target_id:
integer()
.The id of the target device.
Return
- retval:
Evision.FaceRecognizerSF.t()
@return A pointer to the created instance of FaceRecognizerSF.
Python prototype (for reference only):
create(framework, bufferModel, bufferConfig[, backend_id[, target_id]]) -> retval
@spec feature(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Extracts face feature from aligned image
Positional Arguments
self:
Evision.FaceRecognizerSF.t()
aligned_img:
Evision.Mat
.input aligned image
Return
face_feature:
Evision.Mat.t()
.output face feature
Python prototype (for reference only):
feature(aligned_img[, face_feature]) -> face_feature
@spec feature(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
Extracts face feature from aligned image
Positional Arguments
self:
Evision.FaceRecognizerSF.t()
aligned_img:
Evision.Mat
.input aligned image
Return
face_feature:
Evision.Mat.t()
.output face feature
Python prototype (for reference only):
feature(aligned_img[, face_feature]) -> face_feature
@spec match(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) :: number() | {:error, String.t()}
Calculates the distance between two face features
Positional Arguments
self:
Evision.FaceRecognizerSF.t()
face_feature1:
Evision.Mat
.the first input feature
face_feature2:
Evision.Mat
.the second input feature of the same size and the same type as face_feature1
Keyword Arguments
dis_type:
integer()
.defines how to calculate the distance between two face features with optional values "FR_COSINE" or "FR_NORM_L2"
Return
- retval:
double
Python prototype (for reference only):
match(face_feature1, face_feature2[, dis_type]) -> retval
@spec match( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [{:dis_type, term()}] | nil ) :: number() | {:error, String.t()}
Calculates the distance between two face features
Positional Arguments
self:
Evision.FaceRecognizerSF.t()
face_feature1:
Evision.Mat
.the first input feature
face_feature2:
Evision.Mat
.the second input feature of the same size and the same type as face_feature1
Keyword Arguments
dis_type:
integer()
.defines how to calculate the distance between two face features with optional values "FR_COSINE" or "FR_NORM_L2"
Return
- retval:
double
Python prototype (for reference only):
match(face_feature1, face_feature2[, dis_type]) -> retval