View Source Evision.ML.Boost (Evision v0.2.9)
Summary
Functions
Computes error on the training or test dataset
Computes error on the training or test dataset
Clears the algorithm state
create
empty
getBoostType
getCVFolds
getDefaultName
getMaxCategories
getMaxDepth
getMinSampleCount
getPriors
getRegressionAccuracy
getTruncatePrunedTree
getUse1SERule
getUseSurrogates
Returns the number of variables in training samples
getWeakCount
getWeightTrimRate
Returns true if the model is classifier
Returns true if the model is trained
Loads and creates a serialized Boost from a file
Loads and creates a serialized Boost from a file
Predicts response(s) for the provided sample(s)
Predicts response(s) for the provided sample(s)
Reads algorithm parameters from a file storage
save
setBoostType
setCVFolds
setMaxCategories
setMaxDepth
setMinSampleCount
setPriors
setRegressionAccuracy
setTruncatePrunedTree
setUse1SERule
setUseSurrogates
setWeakCount
setWeightTrimRate
Trains the statistical model
Trains the statistical model
Trains the statistical model
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.ML.Boost{ref: reference()}
Type that represents an ML.Boost
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec calcError(t(), Evision.ML.TrainData.t(), boolean()) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Computes error on the training or test dataset
Positional Arguments
self:
Evision.ML.Boost.t()
data:
Evision.ML.TrainData.t()
.the training data
test:
bool
.if true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing.
Return
retval:
float
resp:
Evision.Mat.t()
.the optional output responses.
The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp
@spec calcError( t(), Evision.ML.TrainData.t(), boolean(), [{atom(), term()}, ...] | nil ) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Computes error on the training or test dataset
Positional Arguments
self:
Evision.ML.Boost.t()
data:
Evision.ML.TrainData.t()
.the training data
test:
bool
.if true, the error is computed over the test subset of the data, otherwise it's computed over the training subset of the data. Please note that if you loaded a completely different dataset to evaluate already trained classifier, you will probably want not to set the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the error is computed for the whole new set. Yes, this sounds a bit confusing.
Return
retval:
float
resp:
Evision.Mat.t()
.the optional output responses.
The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the algorithm state
Positional Arguments
- self:
Evision.ML.Boost.t()
Python prototype (for reference only):
clear() -> None
create
Return
- retval:
Evision.ML.Boost.t()
Creates the empty model. Use StatModel::train to train the model, Algorithm::load\<Boost>(filename) to load the pre-trained model.
Python prototype (for reference only):
create() -> retval
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
empty
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec getBoostType(Keyword.t()) :: any() | {:error, String.t()}
@spec getBoostType(t()) :: integer() | {:error, String.t()}
getBoostType
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
integer()
@see setBoostType/2
Python prototype (for reference only):
getBoostType() -> retval
@spec getCVFolds(Keyword.t()) :: any() | {:error, String.t()}
@spec getCVFolds(t()) :: integer() | {:error, String.t()}
getCVFolds
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
integer()
@see setCVFolds/2
Python prototype (for reference only):
getCVFolds() -> retval
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
@spec getMaxCategories(Keyword.t()) :: any() | {:error, String.t()}
@spec getMaxCategories(t()) :: integer() | {:error, String.t()}
getMaxCategories
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
integer()
@see setMaxCategories/2
Python prototype (for reference only):
getMaxCategories() -> retval
@spec getMaxDepth(Keyword.t()) :: any() | {:error, String.t()}
@spec getMaxDepth(t()) :: integer() | {:error, String.t()}
getMaxDepth
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
integer()
@see setMaxDepth/2
Python prototype (for reference only):
getMaxDepth() -> retval
@spec getMinSampleCount(Keyword.t()) :: any() | {:error, String.t()}
@spec getMinSampleCount(t()) :: integer() | {:error, String.t()}
getMinSampleCount
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
integer()
@see setMinSampleCount/2
Python prototype (for reference only):
getMinSampleCount() -> retval
@spec getPriors(Keyword.t()) :: any() | {:error, String.t()}
@spec getPriors(t()) :: Evision.Mat.t() | {:error, String.t()}
getPriors
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
Evision.Mat.t()
@see setPriors/2
Python prototype (for reference only):
getPriors() -> retval
@spec getRegressionAccuracy(Keyword.t()) :: any() | {:error, String.t()}
@spec getRegressionAccuracy(t()) :: number() | {:error, String.t()}
getRegressionAccuracy
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
float
Python prototype (for reference only):
getRegressionAccuracy() -> retval
@spec getTruncatePrunedTree(Keyword.t()) :: any() | {:error, String.t()}
@spec getTruncatePrunedTree(t()) :: boolean() | {:error, String.t()}
getTruncatePrunedTree
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
bool
Python prototype (for reference only):
getTruncatePrunedTree() -> retval
@spec getUse1SERule(Keyword.t()) :: any() | {:error, String.t()}
@spec getUse1SERule(t()) :: boolean() | {:error, String.t()}
getUse1SERule
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
bool
@see setUse1SERule/2
Python prototype (for reference only):
getUse1SERule() -> retval
@spec getUseSurrogates(Keyword.t()) :: any() | {:error, String.t()}
@spec getUseSurrogates(t()) :: boolean() | {:error, String.t()}
getUseSurrogates
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
bool
@see setUseSurrogates/2
Python prototype (for reference only):
getUseSurrogates() -> retval
@spec getVarCount(Keyword.t()) :: any() | {:error, String.t()}
@spec getVarCount(t()) :: integer() | {:error, String.t()}
Returns the number of variables in training samples
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
integer()
Python prototype (for reference only):
getVarCount() -> retval
@spec getWeakCount(Keyword.t()) :: any() | {:error, String.t()}
@spec getWeakCount(t()) :: integer() | {:error, String.t()}
getWeakCount
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
integer()
@see setWeakCount/2
Python prototype (for reference only):
getWeakCount() -> retval
@spec getWeightTrimRate(Keyword.t()) :: any() | {:error, String.t()}
@spec getWeightTrimRate(t()) :: number() | {:error, String.t()}
getWeightTrimRate
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
double
@see setWeightTrimRate/2
Python prototype (for reference only):
getWeightTrimRate() -> retval
@spec isClassifier(Keyword.t()) :: any() | {:error, String.t()}
@spec isClassifier(t()) :: boolean() | {:error, String.t()}
Returns true if the model is classifier
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
bool
Python prototype (for reference only):
isClassifier() -> retval
@spec isTrained(Keyword.t()) :: any() | {:error, String.t()}
@spec isTrained(t()) :: boolean() | {:error, String.t()}
Returns true if the model is trained
Positional Arguments
- self:
Evision.ML.Boost.t()
Return
- retval:
bool
Python prototype (for reference only):
isTrained() -> retval
@spec load(Keyword.t()) :: any() | {:error, String.t()}
@spec load(binary()) :: t() | {:error, String.t()}
Loads and creates a serialized Boost from a file
Positional Arguments
filepath:
String
.path to serialized Boost
Keyword Arguments
nodeName:
String
.name of node containing the classifier
Return
- retval:
Evision.ML.Boost.t()
Use Boost::save to serialize and store an RTree to disk. Load the Boost from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval
Loads and creates a serialized Boost from a file
Positional Arguments
filepath:
String
.path to serialized Boost
Keyword Arguments
nodeName:
String
.name of node containing the classifier
Return
- retval:
Evision.ML.Boost.t()
Use Boost::save to serialize and store an RTree to disk. Load the Boost from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval
@spec predict(t(), Evision.Mat.maybe_mat_in()) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Predicts response(s) for the provided sample(s)
Positional Arguments
self:
Evision.ML.Boost.t()
samples:
Evision.Mat
.The input samples, floating-point matrix
Keyword Arguments
flags:
integer()
.The optional flags, model-dependent. See cv::ml::StatModel::Flags.
Return
retval:
float
results:
Evision.Mat.t()
.The optional output matrix of results.
Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results
@spec predict(t(), Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) :: {number(), Evision.Mat.t()} | {:error, String.t()}
Predicts response(s) for the provided sample(s)
Positional Arguments
self:
Evision.ML.Boost.t()
samples:
Evision.Mat
.The input samples, floating-point matrix
Keyword Arguments
flags:
integer()
.The optional flags, model-dependent. See cv::ml::StatModel::Flags.
Return
retval:
float
results:
Evision.Mat.t()
.The optional output matrix of results.
Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.ML.Boost.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
save
Positional Arguments
- self:
Evision.ML.Boost.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
setBoostType
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
integer()
@see getBoostType/1
Python prototype (for reference only):
setBoostType(val) -> None
setCVFolds
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
integer()
@see getCVFolds/1
Python prototype (for reference only):
setCVFolds(val) -> None
setMaxCategories
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
integer()
@see getMaxCategories/1
Python prototype (for reference only):
setMaxCategories(val) -> None
setMaxDepth
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
integer()
@see getMaxDepth/1
Python prototype (for reference only):
setMaxDepth(val) -> None
setMinSampleCount
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
integer()
@see getMinSampleCount/1
Python prototype (for reference only):
setMinSampleCount(val) -> None
@spec setPriors(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}
setPriors
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
Evision.Mat
@see getPriors/1
Python prototype (for reference only):
setPriors(val) -> None
setRegressionAccuracy
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
float
Python prototype (for reference only):
setRegressionAccuracy(val) -> None
setTruncatePrunedTree
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
bool
Python prototype (for reference only):
setTruncatePrunedTree(val) -> None
setUse1SERule
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
bool
@see getUse1SERule/1
Python prototype (for reference only):
setUse1SERule(val) -> None
setUseSurrogates
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
bool
@see getUseSurrogates/1
Python prototype (for reference only):
setUseSurrogates(val) -> None
setWeakCount
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
integer()
@see getWeakCount/1
Python prototype (for reference only):
setWeakCount(val) -> None
setWeightTrimRate
Positional Arguments
- self:
Evision.ML.Boost.t()
- val:
double
@see getWeightTrimRate/1
Python prototype (for reference only):
setWeightTrimRate(val) -> None
@spec train(t(), Evision.ML.TrainData.t()) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.Boost.t()
trainData:
Evision.ML.TrainData.t()
.training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
Keyword Arguments
flags:
integer()
.optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
Return
- retval:
bool
Python prototype (for reference only):
train(trainData[, flags]) -> retval
@spec train(t(), Evision.ML.TrainData.t(), [{:flags, term()}] | nil) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.Boost.t()
trainData:
Evision.ML.TrainData.t()
.training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
Keyword Arguments
flags:
integer()
.optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
Return
- retval:
bool
Python prototype (for reference only):
train(trainData[, flags]) -> retval
@spec train(t(), Evision.Mat.maybe_mat_in(), integer(), Evision.Mat.maybe_mat_in()) :: boolean() | {:error, String.t()}
Trains the statistical model
Positional Arguments
self:
Evision.ML.Boost.t()
samples:
Evision.Mat
.training samples
layout:
integer()
.See ml::SampleTypes.
responses:
Evision.Mat
.vector of responses associated with the training samples.
Return
- retval:
bool
Python prototype (for reference only):
train(samples, layout, responses) -> retval
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.ML.Boost.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.ML.Boost.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None