View Source Evision.BackgroundSubtractorMOG2 (Evision v0.2.9)
Summary
Functions
Computes a foreground mask.
Computes a foreground mask.
Clears the algorithm state
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Computes a background image.
Computes a background image.
Returns the "background ratio" parameter of the algorithm
Returns the complexity reduction threshold
getDefaultName
Returns the shadow detection flag
Returns the number of last frames that affect the background model
Returns the number of gaussian components in the background model
Returns the shadow threshold
Returns the shadow value
Returns the initial variance of each gaussian component
getVarMax
getVarMin
Returns the variance threshold for the pixel-model match
Returns the variance threshold for the pixel-model match used for new mixture component generation
Reads algorithm parameters from a file storage
save
Sets the "background ratio" parameter of the algorithm
Sets the complexity reduction threshold
Enables or disables shadow detection
Sets the number of last frames that affect the background model
Sets the number of gaussian components in the background model.
Sets the shadow threshold
Sets the shadow value
Sets the initial variance of each gaussian component
setVarMax
setVarMin
Sets the variance threshold for the pixel-model match
Sets the variance threshold for the pixel-model match used for new mixture component generation
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.BackgroundSubtractorMOG2{ref: reference()}
Type that represents an BackgroundSubtractorMOG2
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Computes a foreground mask.
Positional Arguments
self:
Evision.BackgroundSubtractorMOG2.t()
image:
Evision.Mat
.Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.
Keyword Arguments
learningRate:
double
.The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.
Return
fgmask:
Evision.Mat.t()
.The output foreground mask as an 8-bit binary image.
Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask
@spec apply(t(), Evision.Mat.maybe_mat_in(), [{:learningRate, term()}] | nil) :: Evision.Mat.t() | {:error, String.t()}
Computes a foreground mask.
Positional Arguments
self:
Evision.BackgroundSubtractorMOG2.t()
image:
Evision.Mat
.Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.
Keyword Arguments
learningRate:
double
.The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.
Return
fgmask:
Evision.Mat.t()
.The output foreground mask as an 8-bit binary image.
Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the algorithm state
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Python prototype (for reference only):
clear() -> None
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec getBackgroundImage(Keyword.t()) :: any() | {:error, String.t()}
@spec getBackgroundImage(t()) :: Evision.Mat.t() | {:error, String.t()}
Computes a background image.
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
backgroundImage:
Evision.Mat.t()
.The output background image.
Note: Sometimes the background image can be very blurry, as it contain the average background statistics.
Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage
@spec getBackgroundImage(t(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
Computes a background image.
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
backgroundImage:
Evision.Mat.t()
.The output background image.
Note: Sometimes the background image can be very blurry, as it contain the average background statistics.
Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage
@spec getBackgroundRatio(Keyword.t()) :: any() | {:error, String.t()}
@spec getBackgroundRatio(t()) :: number() | {:error, String.t()}
Returns the "background ratio" parameter of the algorithm
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
If a foreground pixel keeps semi-constant value for about backgroundRatio*history frames, it's considered background and added to the model as a center of a new component. It corresponds to TB parameter in the paper.
Python prototype (for reference only):
getBackgroundRatio() -> retval
@spec getComplexityReductionThreshold(Keyword.t()) :: any() | {:error, String.t()}
@spec getComplexityReductionThreshold(t()) :: number() | {:error, String.t()}
Returns the complexity reduction threshold
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05 is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the standard Stauffer&Grimson algorithm.
Python prototype (for reference only):
getComplexityReductionThreshold() -> retval
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
@spec getDetectShadows(Keyword.t()) :: any() | {:error, String.t()}
@spec getDetectShadows(t()) :: boolean() | {:error, String.t()}
Returns the shadow detection flag
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
bool
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for details.
Python prototype (for reference only):
getDetectShadows() -> retval
@spec getHistory(Keyword.t()) :: any() | {:error, String.t()}
@spec getHistory(t()) :: integer() | {:error, String.t()}
Returns the number of last frames that affect the background model
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
integer()
Python prototype (for reference only):
getHistory() -> retval
@spec getNMixtures(Keyword.t()) :: any() | {:error, String.t()}
@spec getNMixtures(t()) :: integer() | {:error, String.t()}
Returns the number of gaussian components in the background model
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
integer()
Python prototype (for reference only):
getNMixtures() -> retval
@spec getShadowThreshold(Keyword.t()) :: any() | {:error, String.t()}
@spec getShadowThreshold(t()) :: number() | {:error, String.t()}
Returns the shadow threshold
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara, Detecting Moving Shadows...*, IEEE PAMI,2003.
Python prototype (for reference only):
getShadowThreshold() -> retval
@spec getShadowValue(Keyword.t()) :: any() | {:error, String.t()}
@spec getShadowValue(t()) :: integer() | {:error, String.t()}
Returns the shadow value
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
integer()
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 in the mask always means background, 255 means foreground.
Python prototype (for reference only):
getShadowValue() -> retval
@spec getVarInit(Keyword.t()) :: any() | {:error, String.t()}
@spec getVarInit(t()) :: number() | {:error, String.t()}
Returns the initial variance of each gaussian component
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
Python prototype (for reference only):
getVarInit() -> retval
@spec getVarMax(Keyword.t()) :: any() | {:error, String.t()}
@spec getVarMax(t()) :: number() | {:error, String.t()}
getVarMax
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
Python prototype (for reference only):
getVarMax() -> retval
@spec getVarMin(Keyword.t()) :: any() | {:error, String.t()}
@spec getVarMin(t()) :: number() | {:error, String.t()}
getVarMin
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
Python prototype (for reference only):
getVarMin() -> retval
@spec getVarThreshold(Keyword.t()) :: any() | {:error, String.t()}
@spec getVarThreshold(t()) :: number() | {:error, String.t()}
Returns the variance threshold for the pixel-model match
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by the background model or not. Related to Cthr from the paper.
Python prototype (for reference only):
getVarThreshold() -> retval
@spec getVarThresholdGen(Keyword.t()) :: any() | {:error, String.t()}
@spec getVarThresholdGen(t()) :: number() | {:error, String.t()}
Returns the variance threshold for the pixel-model match used for new mixture component generation
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it is considered foreground or added as a new component. 3 sigma => Tg=3*3=9 is default. A smaller Tg value generates more components. A higher Tg value may result in a small number of components but they can grow too large.
Python prototype (for reference only):
getVarThresholdGen() -> retval
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
save
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
Sets the "background ratio" parameter of the algorithm
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- ratio:
double
Python prototype (for reference only):
setBackgroundRatio(ratio) -> None
Sets the complexity reduction threshold
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- ct:
double
Python prototype (for reference only):
setComplexityReductionThreshold(ct) -> None
Enables or disables shadow detection
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- detectShadows:
bool
Python prototype (for reference only):
setDetectShadows(detectShadows) -> None
Sets the number of last frames that affect the background model
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- history:
integer()
Python prototype (for reference only):
setHistory(history) -> None
Sets the number of gaussian components in the background model.
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- nmixtures:
integer()
The model needs to be reinitalized to reserve memory.
Python prototype (for reference only):
setNMixtures(nmixtures) -> None
Sets the shadow threshold
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- threshold:
double
Python prototype (for reference only):
setShadowThreshold(threshold) -> None
Sets the shadow value
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- value:
integer()
Python prototype (for reference only):
setShadowValue(value) -> None
Sets the initial variance of each gaussian component
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varInit:
double
Python prototype (for reference only):
setVarInit(varInit) -> None
setVarMax
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varMax:
double
Python prototype (for reference only):
setVarMax(varMax) -> None
setVarMin
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varMin:
double
Python prototype (for reference only):
setVarMin(varMin) -> None
Sets the variance threshold for the pixel-model match
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varThreshold:
double
Python prototype (for reference only):
setVarThreshold(varThreshold) -> None
Sets the variance threshold for the pixel-model match used for new mixture component generation
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varThresholdGen:
double
Python prototype (for reference only):
setVarThresholdGen(varThresholdGen) -> None
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None