View Source Evision.DNN.SegmentationModel (Evision v0.1.21)

Link to this section Summary

Types

t()

Type that represents an Evision.DNN.SegmentationModel struct.

Functions

Given the @p input frame, create input blob, run net and return the output @p blobs.

Given the @p input frame, create input blob, run net and return the output @p blobs.

Given the @p input frame, create input blob, run net

Given the @p input frame, create input blob, run net

Variant 1:

Create model from deep learning network.

Create segmentation model from network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.

Set flag crop for frame.

Set mean value for frame.

Set preprocessing parameters for frame.

Set preprocessing parameters for frame.

Set scalefactor value for frame.

Set input size for frame.

Set flag swapRB for frame.

Link to this section Types

@type t() :: %Evision.DNN.SegmentationModel{ref: reference()}

Type that represents an Evision.DNN.SegmentationModel struct.

  • ref. reference()

    The underlying erlang resource variable.

Link to this section Functions

@spec predict(t(), Evision.Mat.maybe_mat_in()) ::
  [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()
  • frame: Evision.Mat
Return
  • outs: [Evision.Mat].

    Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):

predict(frame[, outs]) -> outs
Link to this function

predict(self, frame, opts)

View Source
@spec predict(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
  [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()
  • frame: Evision.Mat
Return
  • outs: [Evision.Mat].

    Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):

predict(frame[, outs]) -> outs
@spec segment(t(), Evision.Mat.maybe_mat_in()) ::
  Evision.Mat.t() | {:error, String.t()}

Given the @p input frame, create input blob, run net

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()
  • frame: Evision.Mat
Return
  • mask: Evision.Mat.

    Allocated class prediction for each pixel

Python prototype (for reference only):

segment(frame[, mask]) -> mask
Link to this function

segment(self, frame, opts)

View Source
@spec segment(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
  Evision.Mat.t() | {:error, String.t()}

Given the @p input frame, create input blob, run net

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()
  • frame: Evision.Mat
Return
  • mask: Evision.Mat.

    Allocated class prediction for each pixel

Python prototype (for reference only):

segment(frame[, mask]) -> mask
Link to this function

segmentationModel(network)

View Source
@spec segmentationModel(Evision.DNN.Net.t()) :: t() | {:error, String.t()}
@spec segmentationModel(binary()) :: t() | {:error, String.t()}

Variant 1:

Create model from deep learning network.

Positional Arguments
Return

Python prototype (for reference only):

SegmentationModel(network) -> <dnn_SegmentationModel object>

Variant 2:

Create segmentation model from network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.

Positional Arguments
  • model: String.

    Binary file contains trained weights.

Keyword Arguments
  • config: String.

    Text file contains network configuration.

Return

Python prototype (for reference only):

SegmentationModel(model[, config]) -> <dnn_SegmentationModel object>
Link to this function

segmentationModel(model, opts)

View Source
@spec segmentationModel(binary(), [{atom(), term()}, ...] | nil) ::
  t() | {:error, String.t()}

Create segmentation model from network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.

Positional Arguments
  • model: String.

    Binary file contains trained weights.

Keyword Arguments
  • config: String.

    Text file contains network configuration.

Return

Python prototype (for reference only):

SegmentationModel(model[, config]) -> <dnn_SegmentationModel object>
Link to this function

setInputCrop(self, crop)

View Source
@spec setInputCrop(t(), boolean()) :: Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()

  • crop: bool.

    Flag which indicates whether image will be cropped after resize or not.

Return

Python prototype (for reference only):

setInputCrop(crop) -> retval
Link to this function

setInputMean(self, mean)

View Source
@spec setInputMean(
  t(),
  {number()}
  | {number(), number()}
  | {number() | number() | number()}
  | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()

  • mean: Scalar.

    Scalar with mean values which are subtracted from channels.

Return

Python prototype (for reference only):

setInputMean(mean) -> retval
@spec setInputParams(t()) :: :ok | {:error, String.t()}

Set preprocessing parameters for frame.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()
Keyword Arguments
  • scale: double.

    Multiplier for frame values.

  • size: Size.

    New input size.

  • mean: Scalar.

    Scalar with mean values which are subtracted from channels.

  • swapRB: bool.

    Flag which indicates that swap first and last channels.

  • crop: bool.

    Flag which indicates whether image will be cropped after resize or not. blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )

Python prototype (for reference only):

setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None
Link to this function

setInputParams(self, opts)

View Source
@spec setInputParams(t(), [{atom(), term()}, ...] | nil) :: :ok | {:error, String.t()}

Set preprocessing parameters for frame.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()
Keyword Arguments
  • scale: double.

    Multiplier for frame values.

  • size: Size.

    New input size.

  • mean: Scalar.

    Scalar with mean values which are subtracted from channels.

  • swapRB: bool.

    Flag which indicates that swap first and last channels.

  • crop: bool.

    Flag which indicates whether image will be cropped after resize or not. blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )

Python prototype (for reference only):

setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None
Link to this function

setInputScale(self, scale)

View Source
@spec setInputScale(t(), number()) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()

  • scale: double.

    Multiplier for frame values.

Return

Python prototype (for reference only):

setInputScale(scale) -> retval
Link to this function

setInputSize(self, size)

View Source
@spec setInputSize(
  t(),
  {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()

  • size: Size.

    New input size.

Return

Note: If shape of the new blob less than 0, then frame size not change.

Python prototype (for reference only):

setInputSize(size) -> retval
Link to this function

setInputSize(self, width, height)

View Source
@spec setInputSize(t(), integer(), integer()) ::
  Evision.DNN.Model.t() | {:error, String.t()}

setInputSize

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()

  • width: int.

    New input width.

  • height: int.

    New input height.

Return

Has overloading in C++

Python prototype (for reference only):

setInputSize(width, height) -> retval
Link to this function

setInputSwapRB(self, swapRB)

View Source
@spec setInputSwapRB(t(), boolean()) :: Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()

  • swapRB: bool.

    Flag which indicates that swap first and last channels.

Return

Python prototype (for reference only):

setInputSwapRB(swapRB) -> retval
Link to this function

setPreferableBackend(self, backendId)

View Source
@spec setPreferableBackend(t(), integer()) ::
  Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()
  • backendId: dnn_Backend
Return

Python prototype (for reference only):

setPreferableBackend(backendId) -> retval
Link to this function

setPreferableTarget(self, targetId)

View Source
@spec setPreferableTarget(t(), integer()) ::
  Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget

Positional Arguments
  • self: Evision.DNN.SegmentationModel.t()
  • targetId: dnn_Target
Return

Python prototype (for reference only):

setPreferableTarget(targetId) -> retval