View Source Evision.GFTTDetector (Evision v0.2.9)
Summary
Functions
Variant 1:
compute
Variant 1:
compute
create
create
defaultNorm
descriptorSize
descriptorType
Variant 1:
detect
Variant 1:
detect
detectAndCompute
detectAndCompute
empty
getBlockSize
getDefaultName
getGradientSize
getHarrisDetector
getK
getMaxFeatures
getMinDistance
getQualityLevel
Variant 1:
read
setBlockSize
setGradientSize
setHarrisDetector
setK
setMaxFeatures
setMinDistance
setQualityLevel
write
write
Types
@type t() :: %Evision.GFTTDetector{ref: reference()}
Type that represents an GFTTDetector
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec compute(t(), [Evision.Mat.maybe_mat_in()], [[Evision.KeyPoint.t()]]) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}
@spec compute(t(), Evision.Mat.maybe_mat_in(), [Evision.KeyPoint.t()]) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}
Variant 1:
compute
Positional Arguments
self:
Evision.GFTTDetector.t()
images:
[Evision.Mat]
.Image set.
Return
keypoints:
[[Evision.KeyPoint]]
.Input collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).
descriptors:
[Evision.Mat]
.Computed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.
Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
Positional Arguments
self:
Evision.GFTTDetector.t()
image:
Evision.Mat
.Image.
Return
keypoints:
[Evision.KeyPoint]
.Input collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).
descriptors:
Evision.Mat.t()
.Computed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.
Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors
@spec compute( t(), [Evision.Mat.maybe_mat_in()], [[Evision.KeyPoint.t()]], [{atom(), term()}, ...] | nil ) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}
@spec compute( t(), Evision.Mat.maybe_mat_in(), [Evision.KeyPoint.t()], [{atom(), term()}, ...] | nil ) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}
Variant 1:
compute
Positional Arguments
self:
Evision.GFTTDetector.t()
images:
[Evision.Mat]
.Image set.
Return
keypoints:
[[Evision.KeyPoint]]
.Input collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).
descriptors:
[Evision.Mat]
.Computed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.
Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant).
Positional Arguments
self:
Evision.GFTTDetector.t()
image:
Evision.Mat
.Image.
Return
keypoints:
[Evision.KeyPoint]
.Input collection of keypoints. Keypoints for which a descriptor cannot be computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint with several dominant orientations (for each orientation).
descriptors:
Evision.Mat.t()
.Computed descriptors. In the second variant of the method descriptors[i] are descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the descriptor for keypoint j-th keypoint.
Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors
create
Keyword Arguments
- maxCorners:
integer()
. - qualityLevel:
double
. - minDistance:
double
. - blockSize:
integer()
. - useHarrisDetector:
bool
. - k:
double
.
Return
- retval:
Evision.GFTTDetector.t()
Python prototype (for reference only):
create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval
@spec create(Keyword.t()) :: any() | {:error, String.t()}
@spec create( [ blockSize: term(), k: term(), maxCorners: term(), minDistance: term(), qualityLevel: term(), useHarrisDetector: term() ] | nil ) :: t() | {:error, String.t()}
create
Keyword Arguments
- maxCorners:
integer()
. - qualityLevel:
double
. - minDistance:
double
. - blockSize:
integer()
. - useHarrisDetector:
bool
. - k:
double
.
Return
- retval:
Evision.GFTTDetector.t()
Python prototype (for reference only):
create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval
create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize)
View Sourcecreate
Positional Arguments
- maxCorners:
integer()
- qualityLevel:
double
- minDistance:
double
- blockSize:
integer()
- gradiantSize:
integer()
Keyword Arguments
- useHarrisDetector:
bool
. - k:
double
.
Return
- retval:
Evision.GFTTDetector.t()
Python prototype (for reference only):
create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> retval
create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize, opts)
View Source@spec create( integer(), number(), number(), integer(), integer(), [k: term(), useHarrisDetector: term()] | nil ) :: t() | {:error, String.t()}
create
Positional Arguments
- maxCorners:
integer()
- qualityLevel:
double
- minDistance:
double
- blockSize:
integer()
- gradiantSize:
integer()
Keyword Arguments
- useHarrisDetector:
bool
. - k:
double
.
Return
- retval:
Evision.GFTTDetector.t()
Python prototype (for reference only):
create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> retval
@spec defaultNorm(Keyword.t()) :: any() | {:error, String.t()}
@spec defaultNorm(t()) :: integer() | {:error, String.t()}
defaultNorm
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
integer()
Python prototype (for reference only):
defaultNorm() -> retval
@spec descriptorSize(Keyword.t()) :: any() | {:error, String.t()}
@spec descriptorSize(t()) :: integer() | {:error, String.t()}
descriptorSize
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
integer()
Python prototype (for reference only):
descriptorSize() -> retval
@spec descriptorType(Keyword.t()) :: any() | {:error, String.t()}
@spec descriptorType(t()) :: integer() | {:error, String.t()}
descriptorType
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
integer()
Python prototype (for reference only):
descriptorType() -> retval
@spec detect(t(), [Evision.Mat.maybe_mat_in()]) :: [[Evision.KeyPoint.t()]] | {:error, String.t()}
@spec detect(t(), Evision.Mat.maybe_mat_in()) :: [Evision.KeyPoint.t()] | {:error, String.t()}
Variant 1:
detect
Positional Arguments
self:
Evision.GFTTDetector.t()
images:
[Evision.Mat]
.Image set.
Keyword Arguments
masks:
[Evision.Mat]
.Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].
Return
keypoints:
[[Evision.KeyPoint]]
.The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .
Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
self:
Evision.GFTTDetector.t()
image:
Evision.Mat
.Image.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying where to look for keypoints (optional). It must be a 8-bit integer matrix with non-zero values in the region of interest.
Return
keypoints:
[Evision.KeyPoint]
.The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .
Python prototype (for reference only):
detect(image[, mask]) -> keypoints
@spec detect(t(), [Evision.Mat.maybe_mat_in()], [{:masks, term()}] | nil) :: [[Evision.KeyPoint.t()]] | {:error, String.t()}
@spec detect(t(), Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) :: [Evision.KeyPoint.t()] | {:error, String.t()}
Variant 1:
detect
Positional Arguments
self:
Evision.GFTTDetector.t()
images:
[Evision.Mat]
.Image set.
Keyword Arguments
masks:
[Evision.Mat]
.Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].
Return
keypoints:
[[Evision.KeyPoint]]
.The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .
Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
self:
Evision.GFTTDetector.t()
image:
Evision.Mat
.Image.
Keyword Arguments
mask:
Evision.Mat
.Mask specifying where to look for keypoints (optional). It must be a 8-bit integer matrix with non-zero values in the region of interest.
Return
keypoints:
[Evision.KeyPoint]
.The detected keypoints. In the second variant of the method keypoints[i] is a set of keypoints detected in images[i] .
Python prototype (for reference only):
detect(image[, mask]) -> keypoints
@spec detectAndCompute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}
detectAndCompute
Positional Arguments
- self:
Evision.GFTTDetector.t()
- image:
Evision.Mat
- mask:
Evision.Mat
Keyword Arguments
- useProvidedKeypoints:
bool
.
Return
- keypoints:
[Evision.KeyPoint]
- descriptors:
Evision.Mat.t()
.
Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors
@spec detectAndCompute( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [{:useProvidedKeypoints, term()}] | nil ) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}
detectAndCompute
Positional Arguments
- self:
Evision.GFTTDetector.t()
- image:
Evision.Mat
- mask:
Evision.Mat
Keyword Arguments
- useProvidedKeypoints:
bool
.
Return
- keypoints:
[Evision.KeyPoint]
- descriptors:
Evision.Mat.t()
.
Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
empty
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec getBlockSize(Keyword.t()) :: any() | {:error, String.t()}
@spec getBlockSize(t()) :: integer() | {:error, String.t()}
getBlockSize
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
integer()
Python prototype (for reference only):
getBlockSize() -> retval
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
String
Python prototype (for reference only):
getDefaultName() -> retval
@spec getGradientSize(Keyword.t()) :: any() | {:error, String.t()}
@spec getGradientSize(t()) :: integer() | {:error, String.t()}
getGradientSize
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
integer()
Python prototype (for reference only):
getGradientSize() -> retval
@spec getHarrisDetector(Keyword.t()) :: any() | {:error, String.t()}
@spec getHarrisDetector(t()) :: boolean() | {:error, String.t()}
getHarrisDetector
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
bool
Python prototype (for reference only):
getHarrisDetector() -> retval
@spec getK(Keyword.t()) :: any() | {:error, String.t()}
@spec getK(t()) :: number() | {:error, String.t()}
getK
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
double
Python prototype (for reference only):
getK() -> retval
@spec getMaxFeatures(Keyword.t()) :: any() | {:error, String.t()}
@spec getMaxFeatures(t()) :: integer() | {:error, String.t()}
getMaxFeatures
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
integer()
Python prototype (for reference only):
getMaxFeatures() -> retval
@spec getMinDistance(Keyword.t()) :: any() | {:error, String.t()}
@spec getMinDistance(t()) :: number() | {:error, String.t()}
getMinDistance
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
double
Python prototype (for reference only):
getMinDistance() -> retval
@spec getQualityLevel(Keyword.t()) :: any() | {:error, String.t()}
@spec getQualityLevel(t()) :: number() | {:error, String.t()}
getQualityLevel
Positional Arguments
- self:
Evision.GFTTDetector.t()
Return
- retval:
double
Python prototype (for reference only):
getQualityLevel() -> retval
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
@spec read(t(), binary()) :: t() | {:error, String.t()}
Variant 1:
read
Positional Arguments
- self:
Evision.GFTTDetector.t()
- arg1:
Evision.FileNode
Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
- self:
Evision.GFTTDetector.t()
- fileName:
String
Python prototype (for reference only):
read(fileName) -> None
setBlockSize
Positional Arguments
- self:
Evision.GFTTDetector.t()
- blockSize:
integer()
Python prototype (for reference only):
setBlockSize(blockSize) -> None
setGradientSize
Positional Arguments
- self:
Evision.GFTTDetector.t()
- gradientSize_:
integer()
Python prototype (for reference only):
setGradientSize(gradientSize_) -> None
setHarrisDetector
Positional Arguments
- self:
Evision.GFTTDetector.t()
- val:
bool
Python prototype (for reference only):
setHarrisDetector(val) -> None
setK
Positional Arguments
- self:
Evision.GFTTDetector.t()
- k:
double
Python prototype (for reference only):
setK(k) -> None
setMaxFeatures
Positional Arguments
- self:
Evision.GFTTDetector.t()
- maxFeatures:
integer()
Python prototype (for reference only):
setMaxFeatures(maxFeatures) -> None
setMinDistance
Positional Arguments
- self:
Evision.GFTTDetector.t()
- minDistance:
double
Python prototype (for reference only):
setMinDistance(minDistance) -> None
setQualityLevel
Positional Arguments
- self:
Evision.GFTTDetector.t()
- qlevel:
double
Python prototype (for reference only):
setQualityLevel(qlevel) -> None
write
Positional Arguments
- self:
Evision.GFTTDetector.t()
- fileName:
String
Python prototype (for reference only):
write(fileName) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.GFTTDetector.t()
- fs:
Evision.FileStorage
- name:
String
Python prototype (for reference only):
write(fs, name) -> None