View Source Evision.Text.OCRHMMDecoder (Evision v0.2.9)
Summary
Functions
Variant 1:
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
Variant 1:
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
Recognize text using HMM.
Variant 1:
run
Types
@type t() :: %Evision.Text.OCRHMMDecoder{ref: reference()}
Type that represents an Text.OCRHMMDecoder
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table)
View Source@spec create( binary(), binary(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in() ) :: t() | {:error, String.t()}
@spec create(term(), binary(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}
Variant 1:
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
Positional Arguments
- filename:
String
- vocabulary:
String
- transition_probabilities_table:
Evision.Mat
- emission_probabilities_table:
Evision.Mat
Keyword Arguments
- mode:
integer()
. - classifier:
integer()
.
Return
- retval:
OCRHMMDecoder
Has overloading in C++
Python prototype (for reference only):
create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]]) -> retval
Variant 2:
Creates an instance of the OCRHMMDecoder class. Initializes HMMDecoder.
Positional Arguments
classifier:
Evision.Text.OCRHMMDecoder.ClassifierCallback
.The character classifier with built in feature extractor.
vocabulary:
String
.The language vocabulary (chars when ascii english text). vocabulary.size() must be equal to the number of classes of the classifier.
transition_probabilities_table:
Evision.Mat
.Table with transition probabilities between character pairs. cols == rows == vocabulary.size().
emission_probabilities_table:
Evision.Mat
.Table with observation emission probabilities. cols == rows == vocabulary.size().
Keyword Arguments
mode:
integer()
.HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment (http://en.wikipedia.org/wiki/Viterbi_algorithm).
Return
- retval:
OCRHMMDecoder
Python prototype (for reference only):
create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode]) -> retval
create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table, opts)
View Source@spec create( binary(), binary(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [classifier: term(), mode: term()] | nil ) :: t() | {:error, String.t()}
@spec create( term(), binary(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [{:mode, term()}] | nil ) :: t() | {:error, String.t()}
Variant 1:
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
Positional Arguments
- filename:
String
- vocabulary:
String
- transition_probabilities_table:
Evision.Mat
- emission_probabilities_table:
Evision.Mat
Keyword Arguments
- mode:
integer()
. - classifier:
integer()
.
Return
- retval:
OCRHMMDecoder
Has overloading in C++
Python prototype (for reference only):
create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]]) -> retval
Variant 2:
Creates an instance of the OCRHMMDecoder class. Initializes HMMDecoder.
Positional Arguments
classifier:
Evision.Text.OCRHMMDecoder.ClassifierCallback
.The character classifier with built in feature extractor.
vocabulary:
String
.The language vocabulary (chars when ascii english text). vocabulary.size() must be equal to the number of classes of the classifier.
transition_probabilities_table:
Evision.Mat
.Table with transition probabilities between character pairs. cols == rows == vocabulary.size().
emission_probabilities_table:
Evision.Mat
.Table with observation emission probabilities. cols == rows == vocabulary.size().
Keyword Arguments
mode:
integer()
.HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment (http://en.wikipedia.org/wiki/Viterbi_algorithm).
Return
- retval:
OCRHMMDecoder
Python prototype (for reference only):
create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode]) -> retval
@spec run(t(), Evision.Mat.maybe_mat_in(), integer()) :: binary() | {:error, String.t()}
Recognize text using HMM.
Positional Arguments
self:
Evision.Text.OCRHMMDecoder.t()
image:
Evision.Mat
.Input image CV_8UC1 or CV_8UC3 with a single text line (or word).
min_confidence:
integer()
Keyword Arguments
component_level:
integer()
.Only OCR_LEVEL_WORD is supported.
Return
- retval:
String
Takes an image and a mask (where each connected component corresponds to a segmented character) on input and returns recognized text in the output_text parameter. Optionally provides also the Rects for individual text elements found (e.g. words), and the list of those text elements with their confidence values.
Python prototype (for reference only):
run(image, min_confidence[, component_level]) -> retval
@spec run( t(), Evision.Mat.maybe_mat_in(), integer(), [{:component_level, term()}] | nil ) :: binary() | {:error, String.t()}
@spec run(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) :: binary() | {:error, String.t()}
Variant 1:
run
Positional Arguments
- self:
Evision.Text.OCRHMMDecoder.t()
- image:
Evision.Mat
- mask:
Evision.Mat
- min_confidence:
integer()
Keyword Arguments
- component_level:
integer()
.
Return
- retval:
String
Python prototype (for reference only):
run(image, mask, min_confidence[, component_level]) -> retval
Variant 2:
Recognize text using HMM.
Positional Arguments
self:
Evision.Text.OCRHMMDecoder.t()
image:
Evision.Mat
.Input image CV_8UC1 or CV_8UC3 with a single text line (or word).
min_confidence:
integer()
Keyword Arguments
component_level:
integer()
.Only OCR_LEVEL_WORD is supported.
Return
- retval:
String
Takes an image and a mask (where each connected component corresponds to a segmented character) on input and returns recognized text in the output_text parameter. Optionally provides also the Rects for individual text elements found (e.g. words), and the list of those text elements with their confidence values.
Python prototype (for reference only):
run(image, min_confidence[, component_level]) -> retval
@spec run( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer(), [{:component_level, term()}] | nil ) :: binary() | {:error, String.t()}
run
Positional Arguments
- self:
Evision.Text.OCRHMMDecoder.t()
- image:
Evision.Mat
- mask:
Evision.Mat
- min_confidence:
integer()
Keyword Arguments
- component_level:
integer()
.
Return
- retval:
String
Python prototype (for reference only):
run(image, mask, min_confidence[, component_level]) -> retval